-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathWideAndDeep.py
67 lines (56 loc) · 2.76 KB
/
WideAndDeep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import tensorflow as tf
from core.features import FeatureMetas, Features
from core.blocks import DNN
def WideAndDeep(
feature_metas,
wide_slots,
deep_slots,
embedding_initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=1e-4),
embedding_regularizer=tf.keras.regularizers.l2(1e-5),
wide_use_bias=True,
wide_kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-4, seed=1024),
wide_kernel_regularizer=tf.keras.regularizers.l2(1e-5),
deep_fixed_embedding_dim=None,
deep_hidden_units=(128, 64, 1),
deep_activations=('relu', 'relu', None),
deep_use_bias=True,
deep_use_bn=False,
deep_dropout=0,
deep_kernel_initializers='glorot_uniform',
deep_bias_initializers='zeros',
deep_kernel_regularizers=tf.keras.regularizers.l2(1e-5),
deep_bias_regularizers=None,
name='Wide&Deep'):
assert isinstance(feature_metas, FeatureMetas)
with tf.name_scope(name):
features = Features(metas=feature_metas)
# Wide Part
with tf.name_scope('Wide'):
wide_output = features.get_linear_logit(embedding_group='dot_embedding',
use_bias=wide_use_bias,
kernel_initializer=wide_kernel_initializer,
kernel_regularizer=wide_kernel_regularizer,
slots_filter=wide_slots)
# Deep Part
with tf.name_scope('Deep'):
deep_inputs = features.gen_concated_feature(embedding_group='embedding',
fixed_embedding_dim=deep_fixed_embedding_dim,
embedding_initializer=embedding_initializer,
embedding_regularizer=embedding_regularizer,
slots_filter=deep_slots)
deep_output = DNN(
units=deep_hidden_units,
use_bias=deep_use_bias,
activations=deep_activations,
use_bn=deep_use_bn,
dropout=deep_dropout,
kernel_initializers=deep_kernel_initializers,
bias_initializers=deep_bias_initializers,
kernel_regularizers=deep_kernel_regularizers,
bias_regularizers=deep_bias_regularizers
)(deep_inputs)
# Output
output = tf.add_n([wide_output, deep_output])
output = tf.keras.activations.sigmoid(output)
model = tf.keras.Model(inputs=features.get_inputs_list(), outputs=output)
return model