-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathMLR.py
46 lines (34 loc) · 1.47 KB
/
MLR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import tensorflow as tf
from core.features import FeatureMetas, Features
def MLR(
feature_metas,
regions=10,
embedding_initializer='glorot_uniform',
embedding_regularizer=tf.keras.regularizers.l2(1e-5),
fixed_embedding_dim=None,
name='MLR'):
assert isinstance(feature_metas, FeatureMetas)
with tf.name_scope(name):
features = Features(metas=feature_metas)
inputs = features.gen_concated_feature(
embedding_group='embedding',
fixed_embedding_dim=fixed_embedding_dim,
embedding_initializer=embedding_initializer,
embedding_regularizer=embedding_regularizer,
slots_filter=None
)
region_values = tf.keras.layers.Dense(
units=regions,
kernel_initializer=tf.keras.initializers.RandomNormal(),
kernel_regularizer=tf.keras.regularizers.l2()
)(inputs)
region_values = tf.keras.activations.sigmoid(region_values)
region_weights = tf.keras.layers.Dense(
units=regions,
kernel_initializer=tf.keras.initializers.RandomNormal(),
kernel_regularizer=tf.keras.regularizers.l2()
)(inputs)
region_weights = tf.keras.layers.Softmax()(region_weights)
output = tf.reduce_sum(tf.multiply(region_values, region_weights), axis=-1, keepdims=True)
model = tf.keras.Model(inputs=features.get_inputs_list(), outputs=output)
return model