-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathFGCNN.py
83 lines (68 loc) · 2.82 KB
/
FGCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import tensorflow as tf
from core.features import FeatureMetas, Features
from core.blocks import DNN, InnerProduct, FGCNNlayer
from core.utils import split_tensor
def FGCNN(
feature_metas,
fg_filters=(14, 16, 18, 20),
fg_widths=(7, 7, 7, 7),
fg_pool_widths=(2, 2, 2, 2),
fg_new_feat_filters=(3, 3, 3, 3),
embedding_initializer='glorot_uniform',
embedding_regularizer=tf.keras.regularizers.l2(1e-5),
fixed_embedding_dim=8,
dnn_hidden_units=(128, 64, 1),
dnn_activations=('relu', 'relu', None),
dnn_use_bias=True,
dnn_use_bn=False,
dnn_dropout=0,
dnn_kernel_initializers='glorot_uniform',
dnn_bias_initializers='zeros',
dnn_kernel_regularizers=tf.keras.regularizers.l2(1e-5),
dnn_bias_regularizers=None,
name='FGCNN'):
assert isinstance(feature_metas, FeatureMetas)
with tf.name_scope(name):
features = Features(metas=feature_metas)
raw_feats = features.get_stacked_feature(
embedding_group='raw',
fixed_embedding_dim=fixed_embedding_dim,
embedding_initializer=embedding_initializer,
embedding_regularizer=embedding_regularizer,
slots_filter=None
)
fg_inputs = features.get_stacked_feature(
embedding_group='fgcnn',
fixed_embedding_dim=fixed_embedding_dim,
embedding_initializer=embedding_initializer,
embedding_regularizer=embedding_regularizer,
slots_filter=None
)
fg_inputs = tf.expand_dims(fg_inputs, axis=-1)
new_feats_list = list()
for filters, width, pool, new_filters in zip(fg_filters, fg_widths, fg_pool_widths, fg_new_feat_filters):
fg_inputs, new_feats = FGCNNlayer(
filters=filters,
kernel_width=width,
pool_width=pool,
new_feat_filters=new_filters
)(fg_inputs)
new_feats_list.append(new_feats)
inputs = tf.concat(new_feats_list + [raw_feats], axis=1)
inputs = split_tensor(inputs, axis=1)
inputs_fm = InnerProduct(require_logit=False)(inputs)
dnn_inputs = tf.concat(inputs + [inputs_fm], axis=1)
output = DNN(
units=dnn_hidden_units,
use_bias=dnn_use_bias,
activations=dnn_activations,
use_bn=dnn_use_bn,
dropout=dnn_dropout,
kernel_initializers=dnn_kernel_initializers,
bias_initializers=dnn_bias_initializers,
kernel_regularizers=dnn_kernel_regularizers,
bias_regularizers=dnn_bias_regularizers
)(dnn_inputs)
output = tf.keras.activations.sigmoid(output)
model = tf.keras.Model(inputs=features.get_inputs_list(), outputs=output)
return model