-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathDeepFM.py
80 lines (68 loc) · 3.48 KB
/
DeepFM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import tensorflow as tf
from core.features import FeatureMetas, Features
from core.blocks import DNN, FM
from core.utils import group_embedded_by_dim
def DeepFM(
feature_metas,
linear_slots,
fm_slots,
dnn_slots,
embedding_initializer='glorot_uniform',
embedding_regularizer=tf.keras.regularizers.l2(1e-5),
fm_fixed_embedding_dim=None,
linear_use_bias=True,
linear_kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-4, seed=1024),
linear_kernel_regularizer=tf.keras.regularizers.l2(1e-5),
dnn_hidden_units=(128, 64, 1),
dnn_activations=('relu', 'relu', None),
dnn_use_bias=True,
dnn_use_bn=False,
dnn_dropout=0,
dnn_kernel_initializers='glorot_uniform',
dnn_bias_initializers='zeros',
dnn_kernel_regularizers=tf.keras.regularizers.l2(1e-5),
dnn_bias_regularizers=None,
name='DeepFM'):
assert isinstance(feature_metas, FeatureMetas)
with tf.name_scope(name):
features = Features(metas=feature_metas)
# Linear Part
with tf.name_scope('Linear'):
linear_output = features.get_linear_logit(use_bias=linear_use_bias,
kernel_initializer=linear_kernel_initializer,
kernel_regularizer=linear_kernel_regularizer,
embedding_group='dot_embedding',
slots_filter=linear_slots)
# FM Part
with tf.name_scope('FM'):
fm_embedded_dict = features.get_embedded_dict(group_name='embedding',
fixed_embedding_dim=fm_fixed_embedding_dim,
embedding_initializer=embedding_initializer,
embedding_regularizer=embedding_regularizer,
slots_filter=fm_slots)
fm_dim_groups = group_embedded_by_dim(fm_embedded_dict)
fms = [FM()(group) for group in fm_dim_groups.values() if len(group) > 1]
fm_output = tf.add_n(fms)
# DNN Part
with tf.name_scope('DNN'):
dnn_inputs = features.gen_concated_feature(embedding_group='embedding',
fixed_embedding_dim=fm_fixed_embedding_dim,
embedding_initializer=embedding_initializer,
embedding_regularizer=embedding_regularizer,
slots_filter=dnn_slots)
dnn_output = DNN(
units=dnn_hidden_units,
use_bias=dnn_use_bias,
activations=dnn_activations,
use_bn=dnn_use_bn,
dropout=dnn_dropout,
kernel_initializers=dnn_kernel_initializers,
bias_initializers=dnn_bias_initializers,
kernel_regularizers=dnn_kernel_regularizers,
bias_regularizers=dnn_bias_regularizers
)(dnn_inputs)
# Output
output = tf.add_n([linear_output, fm_output, dnn_output])
output = tf.keras.activations.sigmoid(output)
model = tf.keras.Model(inputs=features.get_inputs_list(), outputs=output)
return model