-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathCCPM.py
75 lines (62 loc) · 2.71 KB
/
CCPM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import tensorflow as tf
from core.features import FeatureMetas, Features
from core.blocks import DNN
def CCPM(
feature_metas,
embedding_initializer='glorot_uniform',
embedding_regularizer=tf.keras.regularizers.l2(1e-5),
fixed_embedding_dim=32,
cnn_filters=(4, 4, 2),
cnn_kernel_widths=(5, 5, 3),
dnn_hidden_units=(128, 64, 1),
dnn_activations=('relu', 'relu', None),
dnn_use_bias=True,
dnn_use_bn=False,
dnn_dropout=0,
dnn_kernel_initializers='glorot_uniform',
dnn_bias_initializers='zeros',
dnn_kernel_regularizers=tf.keras.regularizers.l2(1e-5),
dnn_bias_regularizers=None,
name='CCPM'):
assert isinstance(feature_metas, FeatureMetas)
assert fixed_embedding_dim is not None
with tf.name_scope(name):
features = Features(metas=feature_metas)
inputs = features.get_stacked_feature(embedding_group='embedding',
fixed_embedding_dim=fixed_embedding_dim,
embedding_initializer=embedding_initializer,
embedding_regularizer=embedding_regularizer,
slots_filter=None,
list_sparse_embedding_aggregater='mean')
inputs = tf.expand_dims(inputs, axis=-1)
l = len(cnn_filters)
n = int(inputs.shape[1])
for i, pack in enumerate(zip(cnn_filters, cnn_kernel_widths)):
filter_num, width = pack
inputs = tf.keras.layers.Conv2D(
filters=filter_num,
kernel_size=(width, 1),
strides=(1, 1),
padding='same',
activation='relu',
use_bias=True
)(inputs)
idx = i + 1
p = 3 if idx == l else max(1, int(n * (1 - (idx / l) ** (l - idx))))
inputs = tf.math.top_k(input=tf.transpose(inputs, [0, 3, 2, 1]), k=p)[0]
inputs = tf.transpose(inputs, [0, 3, 2, 1])
inputs = tf.keras.layers.Flatten()(inputs)
output = DNN(
units=dnn_hidden_units,
use_bias=dnn_use_bias,
activations=dnn_activations,
use_bn=dnn_use_bn,
dropout=dnn_dropout,
kernel_initializers=dnn_kernel_initializers,
bias_initializers=dnn_bias_initializers,
kernel_regularizers=dnn_kernel_regularizers,
bias_regularizers=dnn_bias_regularizers
)(inputs)
output = tf.keras.activations.sigmoid(output)
model = tf.keras.Model(inputs=features.get_inputs_list(), outputs=output)
return model