-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathAutoInt.py
68 lines (57 loc) · 2.59 KB
/
AutoInt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import tensorflow as tf
from core.features import FeatureMetas, Features
from core.blocks import DNN, AutoIntInteraction
from core.utils import group_embedded_by_dim
def AutoInt(
feature_metas,
seed=2333,
interaction_layer_num=3,
attention_embedding_size=8,
attention_heads=2,
interaction_use_res=True,
embedding_initializer='glorot_uniform',
embedding_regularizer=tf.keras.regularizers.l2(1e-5),
fixed_embedding_dim=None,
dnn_hidden_units=(128, 64, 1),
dnn_activations=('relu', 'relu', None),
dnn_use_bias=True,
dnn_use_bn=False,
dnn_dropout=0,
dnn_kernel_initializers='glorot_uniform',
dnn_bias_initializers='zeros',
dnn_kernel_regularizers=tf.keras.regularizers.l2(1e-5),
dnn_bias_regularizers=None,
name='AutoInt'):
assert isinstance(feature_metas, FeatureMetas)
with tf.name_scope(name):
features = Features(metas=feature_metas)
embedded_dict = features.get_embedded_dict(slots_filter=None,
fixed_embedding_dim=fixed_embedding_dim,
embedding_initializer=embedding_initializer,
embedding_regularizer=embedding_regularizer,
group_name='embedding')
grouped_embedded = group_embedded_by_dim(embedded_dict)
grouped_inputs = [tf.stack(group, axis=1) for group in grouped_embedded.values()]
for _ in range(interaction_layer_num):
for i in range(len(grouped_inputs)):
grouped_inputs[i] = AutoIntInteraction(
att_embedding_size=attention_embedding_size,
heads=attention_heads,
use_res=interaction_use_res,
seed=seed
)(grouped_inputs[i])
dnn_inputs = tf.keras.layers.Flatten()(tf.concat(grouped_inputs, axis=2))
output = DNN(
units=dnn_hidden_units,
use_bias=dnn_use_bias,
activations=dnn_activations,
use_bn=dnn_use_bn,
dropout=dnn_dropout,
kernel_initializers=dnn_kernel_initializers,
bias_initializers=dnn_bias_initializers,
kernel_regularizers=dnn_kernel_regularizers,
bias_regularizers=dnn_bias_regularizers
)(dnn_inputs)
output = tf.keras.activations.sigmoid(output)
model = tf.keras.Model(inputs=features.get_inputs_list(), outputs=output)
return model