-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
391 lines (391 loc) · 15 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
install.packages("rlang")
.libPaths()
.libPaths(2)
.libPaths(D:\RLibrary)
.libPaths(D:/RLibrary)
.libPaths("D:\RLibrary")
.libPaths("D:/RLibrary")
.libPaths()
shiny::runApp('C:/Users/cgao001/OneDrive/R_shiny/COPD')
shiny::runApp('C:/Users/cgao001/OneDrive/R_shiny/COPD')
shiny::runApp('C:/Users/cgao001/OneDrive/R_shiny/COPD')
install.packages("magrittr")
shiny::runApp('C:/Users/cgao001/OneDrive/R_shiny/COPD')
install.packages("fastmap")
shiny::runApp('C:/Users/cgao001/OneDrive/R_shiny/COPD')
clear
clc
set.seed(10111)
x = matrix(rnorm(40), 20, 2)
y = rep(c(-1, 1), c(10, 10))
x[y == 1,] = x[y == 1,] + 1
plot(x, col = y + 3, pch = 19)
View(x)
y
library(e1071)
dat = data.frame(x, y = as.factor(y))
View(dat)
svmfit = svm(y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)
print(svmfit)
print(svmfit)
plot(svmfit, dat)
library(e1071)
library(rpart)
data(Glass, package="mlbench")
## split data into a train and test set
index <- 1:nrow(Glass)
testindex <- sample(index, trunc(length(index)/3))
testset <- Glass[testindex,]
trainset <- Glass[-testindex,]
install.packages("mlbench")
data(Glass, package="mlbench")
View(Glass)
## split data into a train and test set
index <- 1:nrow(Glass)
testindex <- sample(index, trunc(length(index)/3))
testset <- Glass[testindex,]
trainset <- Glass[-testindex,]
svm.model <- svm(Type ~ ., data = trainset, cost = 100, gamma = 1)
svm.pred <- predict(svm.model, testset[,-10])
## compute svm confusion matrix
table(pred = svm.pred, true = testset[,10])
# NOT RUN {
data(iris)
attach(iris)
## classification mode
# default with factor response:
model <- svm(Species ~ ., data = iris)
# alternatively the traditional interface:
x <- subset(iris, select = -Species)
y <- Species
model <- svm(x, y)
print(model)
summary(model)
# test with train data
pred <- predict(model, x)
# (same as:)
pred <- fitted(model)
# Check accuracy:
table(pred, y)
# compute decision values and probabilities:
pred <- predict(model, x, decision.values = TRUE)
attr(pred, "decision.values")[1:4,]
# visualize (classes by color, SV by crosses):
plot(cmdscale(dist(iris[,-5])),
col = as.integer(iris[,5]),
pch = c("o","+")[1:150 %in% model$index + 1])
View(iris)
t <- cmdscale(dist(iris[,-5]))
View(t)
m <- svm(setosa ~ Petal.Width + Petal.Length,
data = iris2, kernel = "linear")
iris2 = scale(iris[,-5])
View(iris2)
m <- svm(setosa ~ Petal.Width + Petal.Length,
data = iris2, kernel = "linear")
setosa <- as.factor(iris$Species == "setosa")
m <- svm(setosa ~ Petal.Width + Petal.Length,
data = iris2, kernel = "linear")
# plot data and separating hyperplane
plot(Petal.Length ~ Petal.Width, data = iris2, col = setosa)
(cf <- coef(m))
abline(-cf[1]/cf[3], -cf[2]/cf[3], col = "red")
plot(cmdscale(dist(iris[,-5])),
col = as.integer(iris[,5]),
pch = c("o","+")[1:150 %in% model$index + 1])
model$index
[1:150 %in% model$index + 1]
1:150 %in% model$index + 1
1:150 %in% model$index
1:150 %in% model$index + 1
t <- read.csv("C:/Users/cgao001/OneDrive - University of Dundee/HIC research/3 hic/Roche/Lab_Summary_27102021.csv")
View(t)
View(t)
t$Control <- paste0(t$ControlMean,"±",t$ControlSTD)
View(t)
t$HFpEF <- paste0(t$HFpEFMean,"±",t$HFpEFSTD)
t$HFrEF <- paste0(t$HFrEFMean,"±",t$HFrEFSTD)
write.csv(t,"C:/Users/cgao001/OneDrive - University of Dundee/HIC research/3 hic/Roche/Lab_Summary_27102021_v2.csv")
t <- read.csv("C:/Users/cgao001/OneDrive - University of Dundee/HIC research/3 hic/Roche/Lab_Summary_27102021.csv")
View(t)
t$Control <- paste0(t$ControlMean,"±",t$ControlSTD)
t$Control <- paste0(round(t$ControlMean,0),"±",round(t$ControlSTD,0))
t$Control <- paste0(round(t$ControlMean,0),"±",round(t$ControlSTD,0))
t$HFpEF <- paste0(round(t$HFpEFMean,0),"±",round(t$HFpEFSTD,0))
t$HFrEF <- paste0(round(t$HFrEFMean,0),"±",round(t$HFrEFSTD,0))
write.csv(t, "C:/Users/cgao001/OneDrive - University of Dundee/HIC research/3 hic/Roche/Lab_Summary_27102021_v3.csv")
# library
library(likert)
# Use a provided dataset
data(pisaitems)
items28 <- pisaitems[, substr(names(pisaitems), 1, 5) == "ST24Q"]
# Build plot
p <- likert(items28)
plot(p)
# library
install.packages("likert")
library(likert)
data(pisaitems)
items28 <- pisaitems[, substr(names(pisaitems), 1, 5) == "ST24Q"]
p <- likert(items28)
plot(p)
View(items28)
xy.pop<-c(3.2,3.5,3.6,3.6,3.5,3.5,3.9,3.7,3.9,3.5,3.2,2.8,2.2,1.8,
1.5,1.3,0.7,0.4)
xx.pop<-c(3.2,3.4,3.5,3.5,3.5,3.7,4,3.8,3.9,3.6,3.2,2.5,2,1.7,1.5,
1.3,1,0.8)
agelabels<-c("0-4","5-9","10-14","15-19","20-24","25-29","30-34",
"35-39","40-44","45-49","50-54","55-59","60-64","65-69","70-74",
"75-79","80-44","85+")
mcol<-color.gradient(c(0,0,0.5,1),c(0,0,0.5,1),c(1,1,0.5,1),18)
fcol<-color.gradient(c(1,1,0.5,1),c(0.5,0.5,0.5,1),c(0.5,0.5,0.5,1),18)
par(mar=pyramid.plot(xy.pop,xx.pop,labels=agelabels,
main="Australian population pyramid 2002",lxcol=mcol,rxcol=fcol,
gap=0.5,show.values=TRUE))
# three column matrices
avtemp<-c(seq(11,2,by=-1),rep(2:6,each=2),seq(11,2,by=-1))
malecook<-matrix(avtemp+sample(-2:2,30,TRUE),ncol=3)
femalecook<-matrix(avtemp+sample(-2:2,30,TRUE),ncol=3)
# group by age
agegrps<-c("0-10","11-20","21-30","31-40","41-50","51-60",
"61-70","71-80","81-90","91+")
oldmar<-pyramid.plot(malecook,femalecook,labels=agegrps,
unit="Bowls per month",lxcol=c("#ff0000","#eeee88","#0000ff"),
rxcol=c("#ff0000","#eeee88","#0000ff"),laxlab=c(0,10,20,30),
raxlab=c(0,10,20,30),top.labels=c("Males","Age","Females"),gap=4,
do.first="plot_bg(\"#eedd55\")")
# put a box around it
box()
# give it a title
mtext("Porridge temperature by age and sex of bear",3,2,cex=1.5)
# stick in a legend
legend(par("usr")[1],11,c("Too hot","Just right","Too cold"),
fill=c("#ff0000","#eeee88","#0000ff"))
# don't forget to restore the margins and background
par(mar=oldmar,bg="transparent")
xy.pop<-c(3.2,3.5,3.6,3.6,3.5,3.5,3.9,3.7,3.9,3.5,3.2,2.8,2.2,1.8,
1.5,1.3,0.7,0.4)
xx.pop<-c(3.2,3.4,3.5,3.5,3.5,3.7,4,3.8,3.9,3.6,3.2,2.5,2,1.7,1.5,
1.3,1,0.8)
agelabels<-c("0-4","5-9","10-14","15-19","20-24","25-29","30-34",
"35-39","40-44","45-49","50-54","55-59","60-64","65-69","70-74",
"75-79","80-44","85+")
mcol<-color.gradient(c(0,0,0.5,1),c(0,0,0.5,1),c(1,1,0.5,1),18)
fcol<-color.gradient(c(1,1,0.5,1),c(0.5,0.5,0.5,1),c(0.5,0.5,0.5,1),18)
par(mar=pyramid.plot(xy.pop,xx.pop,labels=agelabels,
main="Australian population pyramid 2002",lxcol=mcol,rxcol=fcol,
gap=0.5,show.values=TRUE))
install.packages("pyramid.plot")
library(pyramid.plot)
par(mar=pyramid.plot(xy.pop,xx.pop,labels=agelabels,
main="Australian population pyramid 2002",lxcol=mcol,rxcol=fcol,
gap=0.5,show.values=TRUE))
library(pyramid)
library(pyramid.plot: Pyramid plot)
library(Pyramid plot)
library(XML)
library(reshape2)
library(ggplot2)
library(plyr)
get_data <- function(country, year) {
c1 <- "http://www.census.gov/population/international/data/idb/region.php?N=%20Results%20&T=10&A=separate&RT=0&Y="
c2 <- "&R=-1&C="
url <- paste0(c1, year, c2, country)
df <- data.frame(readHTMLTable(url))
keep <- c(2, 4, 5)
df <- df[,keep]
names(df) <- c("Age", "Male", "Female")
cols <- 2:3
df[,cols] <- apply(df[,cols], 2, function(x) as.numeric(as.character(gsub(",", "", x))))
df <- df[df$Age != 'Total', ]
df$Male <- -1 * df$Male
df$Age <- factor(df$Age, levels = df$Age, labels = df$Age)
df.melt <- melt(df,
value.name='Population',
variable.name = 'Gender',
id.vars='Age' )
return(df.melt)
}
View(get_data)
nigeria <- get_data("NI", 2014)
library(XML)
library(reshape2)
library(ggplot2)
library(plyr)
get_data <- function(country, year) {
c1 <- "http://www.census.gov/population/international/data/idb/region.php?N=%20Results%20&T=10&A=separate&RT=0&Y="
c2 <- "&R=-1&C="
url <- paste0(c1, year, c2, country)
df <- data.frame(readHTMLTable(url))
keep <- c(2, 4, 5)
df <- df[,keep]
names(df) <- c("Age", "Male", "Female")
cols <- 2:3
df[,cols] <- apply(df[,cols], 2, function(x) as.numeric(as.character(gsub(",", "", x))))
df <- df[df$Age != 'Total', ]
df$Male <- -1 * df$Male
df$Age <- factor(df$Age, levels = df$Age, labels = df$Age)
df.melt <- melt(df,
value.name='Population',
variable.name = 'Gender',
id.vars='Age' )
return(df.melt)
}
nigeria <- get_data("NI", 2014)
popGHcens <- getAgeTable(country = "QA", year = 2015)
library(XML)
library(reshape2)
library(plyr)
library(ggplot2)
source('http://klein.uk/R/Viz/pyramids.R')
test <- data.frame(v=sample(1:20,1000,replace=T), g=c('M','F'))
View(test)
require(ggplot2)
require(plyr)
ggplot(data=test,aes(x=as.factor(v),fill=g)) +
geom_bar(subset=.(g=="F")) +
geom_bar(subset=.(g=="M"),aes(y=..count..*(-1))) +
scale_y_continuous(breaks=seq(-40,40,10),labels=abs(seq(-40,40,10))) +
coord_flip()
ggplot(data=test,aes(x=as.factor(v),fill=g)) +
geom_bar(data=subset(test,g=="F")) +
geom_bar(data=subset(test,g=="M"),aes(y=..count..*(-1))) +
scale_y_continuous(breaks=seq(-40,40,10),labels=abs(seq(-40,40,10))) +
coord_flip()
ggplot(data=test,aes(x=as.factor(v),fill=g)) +
geom_bar(data=subset(test,g=="F")) +
geom_bar(data=subset(test,g=="M"),aes(y=..count..*(-1))) +
scale_y_continuous(breaks=seq(-40,40,10),labels=abs(seq(-40,40,10))) +
coord_flip()
require(graphics)
x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
wilcox.test(x, y, alternative = "g") # greater
data(aSAH)
roc1 <- roc(aSAH$outcome, aSAH$s100b)
## Basic example ##
ci.auc(roc1)
install.packages("pROC")
library(pROC)
data(aSAH)
roc1 <- roc(aSAH$outcome, aSAH$s100b)
## Basic example ##
ci.auc(roc1)
data(aSAH)
force(aSAH)
View(aSAH)
roc(aSAH$outcome, aSAH$s100b,
levels=c("Good", "Poor"))
data("two_class_example")
ppv(two_class_example, truth, predicted)
mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
View(mydata)
install.packages("survival")
install.packages("survminer")
install.packages("dplyr")
library(survival)
library(survminer)
library(dplyr)
data(cancer)
force(ovarian)
# Dichotomize age and change data labels
ovarian$rx <- factor(ovarian$rx,
levels = c("1", "2"),
labels = c("A", "B"))
ovarian$resid.ds <- factor(ovarian$resid.ds,
levels = c("1", "2"),
labels = c("no", "yes"))
ovarian$ecog.ps <- factor(ovarian$ecog.ps,
levels = c("1", "2"),
labels = c("good", "bad"))
View(ovarian)
ovarian <- ovarian %>% mutate(age_group = ifelse(age >=50, "old", "young"))
ovarian$age_group <- factor(ovarian$age_group)
surv_object <- Surv(time = ovarian$futime, event = ovarian$fustat)
ovarian$futime
surv_object
? Surv
? coxph
# Fit a time transform model using current age
coxph(Surv(time, status) ~ ph.ecog + tt(age), data=lung,
tt=function(x,t,...) pspline(x + t/365.25))
View(lung)
coxph(Surv(stop, event) ~ (rx + size + number) * strata(enum),
cluster = id, bladder1)
exp((75-45)*log(1.04))
log(1.04)
log(10)
exp(4)
? exp
log2(4)
log2(8)
log2(10)
log2(16)
Read2SNOMED <- read.delim("C:/Users/cgao001/Downloads/nhs_datamigration_29.0.0_20200401000001/Mapping Tables/Updated/Clinically Assured/codesWithValues_AlternateMaps_READ2_20200401000001.txt")
View(Read2SNOMED)
rcsctmap2_uk_20200401000001 <- read.delim("C:/Users/cgao001/OneDrive - University of Dundee/HIC research/3 hic/Sprint project/ReadCode2SNOMED/nhs_datamigration1/Mapping Tables/Updated/Clinically Assured/rcsctmap2_uk_20200401000001.txt")
View(rcsctmap2_uk_20200401000001)
View(rcsctmap2_uk_20200401000001)
sct2_Concept_UKCLDelta_GB1000000_20211124 <- read.delim("C:/Users/cgao001/Downloads/uk_sct2cldelta_32.7.0_20211124000001Z/SnomedCT_UKClinicalRF2_PRODUCTION_20211124T000001Z/Delta/Terminology/sct2_Concept_UKCLDelta_GB1000000_20211124.txt")
View(sct2_Concept_UKCLDelta_GB1000000_20211124)
sct2_Description_UKCLDelta.en_GB1000000_20211124 <- read.delim("C:/Users/cgao001/Downloads/uk_sct2cldelta_32.7.0_20211124000001Z/SnomedCT_UKClinicalRF2_PRODUCTION_20211124T000001Z/Delta/Terminology/sct2_Description_UKCLDelta-en_GB1000000_20211124.txt")
View(sct2_Description_UKCLDelta.en_GB1000000_20211124)
sct2_Description_Delta.en_INT_20210131 <- read.delim("C:/Users/cgao001/Downloads/uk_sct2cldelta_32.7.0_20211124000001Z/SnomedCT_InternationalRF2_PRODUCTION_20210131T120000Z/Delta/Terminology/sct2_Description_Delta-en_INT_20210131.txt")
View(sct2_Description_Delta.en_INT_20210131)
shiny::runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
shiny::runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
runApp('C:/Users/CGao001/OneDrive - University of Dundee/General/0. Archive/Sprint project/Shiny-APP/career-pathfinder-master')
setwd("C:/Users/CGao001/OneDrive - University of Dundee/Documents/GitHub/ScottishLabData")
source('ExemplarTestData/createTables.R')
source('./R code for data harmonisation/0_functions.R')
# initialise 'HIC' database - creates 'con' variable
initDb()
# get dummy data from db
dat <- dbGetQuery(con, "SELECT * FROM FHIR_HIC")
# create example data harmonisation object
changeCmd <- data.frame(ReadCode = '44I4.',
readCodeDescription = 'Potassium',
HIC_unit = 'mmol/L; nmol/L',
Unit = 'mmol/L',
Rule = 'if nmol/L value 1e-06')
# harmonise data by transfering units
rc = '44I4.'
View(dat)
# harmonise data by transfering units
rc = '44I4.'
t <- unitTransferFunction(dat, changeCmd,rc)
View(t)
data <- dat
unitinfor <- changeCmd
t <- unitTransferFunction(data, unitinfor,rc)
data <- data[!is.na(data$valueUnit),] #remove na
data <- data[!is.na(data$valueQuantity),] #remove na
rules <- strsplit(as.character(unitinfor$Rule),";")
rulenumber=1
r=rules[[1]][rulenumber]
r_u <- lapply(strsplit(as.character(r)," "),function(x) x[pmax(0,which(x=="value")-1)])
r_r <- lapply(strsplit(as.character(r)," "),function(x) x[pmax(0,which(x=="value")+1)])
dim(na.omit(data[data$code==rc & data$valueUnit==r_u,]))[1]
dim(na.omit(data[data$code==rc & data$valueUnit==r_u,]))
r_u
rc
dim(data[data$code==rc & data$valueUnit==r_u,])
data[data$code==rc & data$valueUnit==r_u,]
View(dat)
source('./R code for data harmonisation/0_functions.R')
t <- unitTransferFunction(data, unitinfor,rc)
as.double(r_r)
as.double(r_r)*100
data[data$code==rc & data$valueUnit==r_u,"valueQuantity"] <- as.double(r_r)*data[data$code==rc & data$valueUnit==r_u,"valueQuantity"]
data[data$code==rc & data$valueUnit==r_u,"valueQuantity"] <- as.double(r_r)*as.double(data[data$code==rc & data$valueUnit==r_u,"valueQuantity"])
source('./R code for data harmonisation/0_functions.R')
t <- unitTransferFunction(data, unitinfor,rc)
View(t)