Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

3D unet: Problem with Section 5.4, cannot download model as bioImage #288

Open
jing00011 opened this issue Aug 29, 2023 · 8 comments
Open
Assignees

Comments

@jing00011
Copy link

Hi, I am trying out the 3D unet using the provided sample data (the mitochondria electron microscope image provided in the link). I finished the training and wanted to download the model as bioImage Model zoo to be used in FIJI in section 5.4. However, I keep getting this error message and have no idea what it's saying...


ValueError Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/tifffile/tifffile.py in enumarg(enum, arg)
23590 try:

23591 return enum(arg)
23592 except Exception:

9 frames
/usr/lib/python3.10/enum.py in call(cls, value, names, module, qualname, type, start)
384 if names is None: # simple value lookup
--> 385 return cls.new(cls, value)
386 # otherwise, functional API: we're creating a new Enum type

/usr/lib/python3.10/enum.py in new(cls, value)
709 if result is None and exc is None:
--> 710 raise ve_exc
711 elif exc is None:

ValueError: 1.25 is not a valid RESUNIT

During handling of the above exception, another exception occurred:

AttributeError Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/tifffile/tifffile.py in enumarg(enum, arg)
23593 try:

23594 return enum[arg.upper()]
23595 except Exception as exc:

AttributeError: 'float' object has no attribute 'upper'

The above exception was the direct cause of the following exception:

ValueError Traceback (most recent call last)
in <cell line: 205>()
203
204 # export the model with keras weights
--> 205 build_model(
206 weight_uri=weight_path,
207 test_inputs=[test_in_path],

/usr/local/lib/python3.10/dist-packages/bioimageio/core/build_spec/build_model.py in build_model(weight_uri, test_inputs, test_outputs, input_axes, output_axes, name, description, authors, tags, documentation, cite, output_path, architecture, model_kwargs, weight_type, sample_inputs, sample_outputs, input_names, input_step, input_min_shape, input_data_range, output_names, output_reference, output_scale, output_offset, output_data_range, halo, preprocessing, postprocessing, pixel_sizes, maintainers, license, covers, git_repo, attachments, packaged_by, run_mode, parent, config, dependencies, links, training_data, root, add_deepimagej_config, tensorflow_version, opset_version, pytorch_version, weight_attachments)
829 if add_deepimagej_config:
830 if sample_inputs is None:
--> 831 sample_inputs, sample_outputs = _write_sample_data(
832 test_inputs, test_outputs, input_axes, output_axes, pixel_sizes, root
833 )

/usr/local/lib/python3.10/dist-packages/bioimageio/core/build_spec/build_model.py in write_sample_data(input_paths, output_paths, input_axes, output_axes, pixel_sizes, export_folder)
451 sample_in_path = export_folder / f"sample_input
{i}.tif"
452 pixel_size = None if pixel_sizes is None else pixel_sizes[i]
--> 453 write_im(sample_in_path, inp, axes, pixel_size)
454 sample_in_paths.append(sample_in_path)
455

/usr/local/lib/python3.10/dist-packages/bioimageio/core/build_spec/build_model.py in write_im(path, im, axes, pixel_size)
444 if np.dtype(im.dtype) == np.dtype("float64"):
445 im = im.astype("float32")
--> 446 tifffile.imwrite(path, im, imagej=True, resolution=resolution)
447
448 sample_in_paths = []

/usr/local/lib/python3.10/dist-packages/tifffile/tifffile.py in imwrite(file, data, bigtiff, byteorder, imagej, ome, shaped, append, shape, dtype, photometric, planarconfig, extrasamples, volumetric, tile, rowsperstrip, bitspersample, compression, compressionargs, predictor, subsampling, jpegtables, colormap, description, datetime, resolution, resolutionunit, subfiletype, software, metadata, extratags, contiguous, truncate, align, maxworkers, returnoffset)
1249 shaped=shaped,
1250 ) as tif:
-> 1251 result = tif.write(
1252 data,
1253 shape=shape,

/usr/local/lib/python3.10/dist-packages/tifffile/tifffile.py in write(failed resolving arguments)
2853 unit = resolution[2] # type: ignore
2854 if unit is not None:
-> 2855 resolutionunit = enumarg(RESUNIT, unit)
2856 addtag(tags, 296, 3, 1, resolutionunit) # ResolutionUnit
2857 else:

/usr/local/lib/python3.10/dist-packages/tifffile/tifffile.py in enumarg(enum, arg)
23594 return enum[arg.upper()]
23595 except Exception as exc:

23596 raise ValueError(f'invalid argument {arg!r}') from exc
23597
23598

ValueError: invalid argument 1.25

I am using OS: iOS and Chrome, would truly appreciate any help on this! Thank you !!

@esgomezm
Copy link
Collaborator

esgomezm commented Oct 9, 2023

Hi @jing00011

Thank you! To confirm, is this the output of section 5.4? @mariana-gferreira could you please try to reproduce it?

@jinxsfe
Copy link

jinxsfe commented Jan 8, 2024

I also meet same problem

@jinxsfe
Copy link

jinxsfe commented Jan 9, 2024

@esgomezm

@mariana-gferreira
Copy link
Collaborator

Hi,

This error is due to the calibration voxel values given for the example image.
Replace the default values with 1 and you will be able to save the model.

Screenshot 2024-01-12 at 16 19 02

Please be aware that this will result in the example image being uncalibrated and the pixel size values in the rdf.yaml being 1. These can be edited for the correct values after the model has been exported.

@jinxsfe
Copy link

jinxsfe commented Jan 18, 2024

I had replace but still can not be save for model, please seehttps://github.com/HenriquesLab/DL4MicEverywhere/issues/25

@jinxsfe
Copy link

jinxsfe commented Jan 18, 2024

image
image
even I change the pixel size

@jinxsfe
Copy link

jinxsfe commented Jan 18, 2024

image

@jinxsfe
Copy link

jinxsfe commented Jan 18, 2024

@mariana-gferreira

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants