-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
103 lines (87 loc) · 2.49 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import argparse
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--eval", dest="eval", action="store_true")
parser.set_defaults(eval=True)
parser.add_argument("--preprocess", dest="preprocess", action="store_true")
parser.set_defaults(preprocess=False)
# data args
parser.add_argument(
"--path_zip_data",
default="data/",
help="path to zip dataset",
)
parser.add_argument(
"--path_stopwords_list",
default="data/stop_words_french.txt",
help="path to a list of stopwords used for preprocessing",
)
parser.add_argument(
"--path_test_data",
default="data/df_test.csv",
help="path to test data ",
)
parser.add_argument(
"--path_train_data",
default="data/df_train.csv",
help="path to train data ",
)
parser.add_argument(
"--preprocessing_class_path",
default="data/preprocess_instance.pkl",
help="path to preprocessing instance ",
)
parser.add_argument(
"--path_results",
default="data/results.csv",
help="path to store the url's categories.",
)
# fasttext models args
parser.add_argument(
"--training_data_fastext_path",
default="data/training_data_fasttext.txt",
help="path to zip dataset",
)
parser.add_argument(
"--fast_text_path",
default="models/fast_text_model.bin",
help="path to zip dataset",
)
parser.add_argument(
"--ratio",
type=float,
default=2 / 3,
help="weight reduce in fasttext embeddings compute",
)
# classifier models args
parser.add_argument(
"--classifier_name",
default="mlaram",
choices=["mlaram", "mlknn"],
help="name of the classifier for the multi-label classification",
)
parser.add_argument(
"--mlknn_k",
type=int,
default=3,
help="number of neighbours for the mlknn classifier",
)
parser.add_argument(
"--vigilance",
type=float,
default=0.95,
help="vigilance parameter for the mlaram classifer",
)
parser.add_argument(
"--thresh_mlaram",
type=float,
default=5 * 1e-5,
help="threshold param for mlaram classifier",
)
parser.add_argument(
"--model_path",
type=str,
default="models/classifier.pkl",
help="path to save the classifier",
)
return parser