-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathC3_Separating_target_non_target_contacts_all_feats.m
426 lines (414 loc) · 15.7 KB
/
C3_Separating_target_non_target_contacts_all_feats.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
% This code separates contacts within and outside of the resection zone
% down-samples them into 28 samples and prepares them
% for clssification in the next script and saves them
% INPUTS: features data from C2_Alldsets_Seizure_all_feature_extraction
% OUTPUTS: features data separated by contacts to be used by C4_Classification files
%%
clc;
clear all;
close all;
% loading the data containing all features from each patient
for Patient=[1:39 41:56]
clearvars -except data_non_target_all data_target_all sel_group Patient mean_feature Features_labels chars
ictal_or_inter='interictal'; % 'ictal' or 'interictal'
if Patient==1
Patient_initials='060';
modality='seeg';
ictal_trials=[1:3];
inter_ictal_trials=[1:2];
elseif Patient==2
Patient_initials='064';
ictal_trials=[1];
modality='ecog';
inter_ictal_trials=[2];
elseif Patient==3
Patient_initials='065';
modality='ecog';
ictal_trials=[1:3];
inter_ictal_trials=[1:2];
elseif Patient==4
Patient_initials='070';
ictal_trials=[1:3];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==5
Patient_initials='074';
ictal_trials=[1:3];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==6
Patient_initials='075';
ictal_trials=[1];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==7
Patient_initials='080';
ictal_trials=[1:4];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==8
Patient_initials='082';
ictal_trials=[1:5];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==9
Patient_initials='086';
ictal_trials=[1:2];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==10
Patient_initials='087';
ictal_trials=[1:2];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==11
Patient_initials='088';
ictal_trials=[1:3];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==12
Patient_initials='089';
ictal_trials=[1:4];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==13
Patient_initials='094';
ictal_trials=[1:3];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==14
Patient_initials='097';
ictal_trials=[1:5];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==15
Patient_initials='105';
ictal_trials=[1:2];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==16
Patient_initials='106';
ictal_trials=[1:3];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==17
Patient_initials='107';
ictal_trials=[1:5];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==18
Patient_initials='111';
ictal_trials=[1:5];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==19
Patient_initials='112';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==20
Patient_initials='114';
ictal_trials=[1:4];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==21
Patient_initials='116';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==22
Patient_initials='117';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==23
Patient_initials='123';
ictal_trials=[1:4];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==24
Patient_initials='126';
ictal_trials=[1:4];
modality='ecog';
inter_ictal_trials=[1:2];
elseif Patient==25
Patient_initials='130';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
% elseif Patient==25
% Patient_initials='132';
% ictal_trials=[1:5];
% modality='seeg';
% inter_ictal_trials=[1:2];
elseif Patient==26
Patient_initials='133';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==27
Patient_initials='134';
ictal_trials=[1];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==28
Patient_initials='135';
ictal_trials=[1:2];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==29
Patient_initials='138';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==30
Patient_initials='139';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==31
Patient_initials='140';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==32
Patient_initials='141';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==33
Patient_initials='142';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==34
Patient_initials='144';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==35
Patient_initials='146';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==36
Patient_initials='148';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==37
Patient_initials='150';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==38
Patient_initials='151';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==39
Patient_initials='157';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==40
Patient_initials='158';
ictal_trials=[4];
modality='seeg';
inter_ictal_trials=[];
elseif Patient==41
Patient_initials='160';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==42
Patient_initials='162';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==43
Patient_initials='163';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==44
Patient_initials='164';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
% elseif Patient==45
% Patient_initials='165';
% seizures=[];
% modality='seeg';
% inter_ictal_trials=[1:2];
elseif Patient==45
Patient_initials='166';
ictal_trials=[1:2];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==46
Patient_initials='171';
ictal_trials=[1:4];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==47
Patient_initials='172';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==48
Patient_initials='173';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==49
Patient_initials='177';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==50
Patient_initials='179';
ictal_trials=[1:2];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==51
Patient_initials='180';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==52
Patient_initials='181';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==53
Patient_initials='185';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==54
Patient_initials='187';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==55
Patient_initials='188';
ictal_trials=[1:5];
modality='seeg';
inter_ictal_trials=[1:2];
elseif Patient==56
Patient_initials='190';
ictal_trials=[1:3];
modality='seeg';
inter_ictal_trials=[1:2];
end
% laoding the data
clearvars tmp_data tmp_data_baseline
if strcmp(ictal_or_inter,'ictal')
load([Patient_initials,'_All2_Features_Seizure',num2str(ictal_trials(1)),'_less_time_res.mat'])
elseif strcmp(ictal_or_inter,'interictal')
load([Patient_initials,'_All2_Features_Interictal',num2str(inter_ictal_trials(1)),'_less_time_res.mat'])
end
featuress=[1:8 10:12 14:36];
chans_feats=repmat(1:length(channels),[length(featuress) 1]);
if strcmp(ictal_or_inter,'ictal')
trials=ictal_trials;
elseif strcmp(ictal_or_inter,'interictal')
trials=inter_ictal_trials;
end
% Categorising the two types of channels
wind_length=1; % only evalauting 1 window size (2s)
f=0;
for feat=featuress % separately for each feature
f=f+1;
tr=0;
for trial=trials % trials refer to recordings
tr=tr+1;
if strcmp(ictal_or_inter,'ictal')
load([Patient_initials,'_All2_Features_Seizure',num2str(trial),chars,'.mat'])
% How many time windows before and after onset are included
% if feat<24
% pre_wind=1:floor(size(features,3)/2);
% post_wind=floor(size(features,3)/2)+1:size(features,3);
% else
pre_wind=1:15;
post_wind=16:29;
% end
elseif strcmp(ictal_or_inter,'interictal')
load([Patient_initials,'_All2_Features_Interictal',num2str(trial),chars,'.mat'])
% How many time windows ar included
limit_wind=1:find(features(24,1,:)~=0,1,'last');
end
patient_data_address=['F:\RESEARCH\Hamid\Multicentre dataset\ds004100\sub-HUP',Patient_initials,'\ses-presurgery\ieeg\'];
folder_address=[patient_data_address,'sub-HUP',Patient_initials,'_ses-presurgery_task-',ictal_or_inter,'_acq-',modality,'_run-',sprintf('%02d',trial)];
%loading channel info file to determine chantacts within and
%outside of resection
channel_info=tdfread([folder_address,'_channels.tsv']);
% indices of target channels
c=0;
Target_area='resect'; % or 'soz'
for ch=1:size(channel_info.status_description,1)
if contains(channel_info.status_description(ch,:),Target_area) && ~isempty(find(contains(channels_id,strtrim(channel_info.name(ch,:)))))
c=c+1;
Specific_targ_chans{c}=channels_id{1,find(contains(channels_id,strtrim(channel_info.name(ch,:))))};
end
end
if exist('Specific_targ_chans','var')
chans_tmp=[];
for ch=1:size(Specific_targ_chans,2)
inds=find(strcmp(channels_id,Specific_targ_chans{ch}));
chans_tmp=horzcat(chans_tmp,chans_feats(:,inds));
end
chans_target=chans_tmp;
included_chans=channels;
included_chans(chans_tmp(1,:))=[];
chans_nontarget=chans_feats(:,included_chans);
tmp_data_Target=squeeze(nanmean(features(feat,chans_target(f,:),:,wind_length),4));
tmp_data_NonTarget=squeeze(nanmean(features(feat,chans_nontarget(f,:),:,wind_length),4));
if size(tmp_data_NonTarget,2)==1
tmp_data_NonTarget=tmp_data_NonTarget';
elseif size(tmp_data_Target,2)==1
tmp_data_Target=tmp_data_Target';
end
% tmp_data_Target and tmp_data_NonTarget contain channels
% with and outside of target area
if strcmp(ictal_or_inter,'ictal')
num_samples_keep=14; % how many time windows are included after onset
% Keep the 14 feature values in the post onset and
% the pre-onset
for s=1:size(tmp_data_Target,1)
data_pre=tmp_data_Target(s,pre_wind);
data_post=tmp_data_Target(s,post_wind);
data_target(s,tr,:)=[resample(data_pre,num_samples_keep,length(data_pre)) resample(data_post,num_samples_keep,length(data_post))];
positive_negative_modulation(Patient,f,s,tr,1)=((nanmean(data_target(s,tr,1:num_samples_keep),3)-nanmean(data_target(s,tr,num_samples_keep:end),3))>0);
end
% Keep the 14 feature values in the post onset and
% the pre-onset
for n=1:size(tmp_data_NonTarget,1)
data_pre=tmp_data_NonTarget(n,pre_wind);
data_post=tmp_data_NonTarget(n,post_wind);
data_non_target(n,tr,:)=[resample(data_pre,num_samples_keep,length(data_pre)) resample(data_post,num_samples_keep,length(data_post))];
positive_negative_modulation(Patient,f,n,tr,2)=((nanmean(data_non_target(n,tr,1:num_samples_keep),3)-nanmean(data_non_target(n,tr,num_samples_keep:end),3))>0);
end
elseif strcmp(ictal_or_inter,'interictal')
num_samples_keep=28; % how many time windows are included interictally
for s=1:size(tmp_data_Target,1)
data_target(s,tr,:)=resample(tmp_data_Target(s,limit_wind),num_samples_keep,size(tmp_data_Target(s,limit_wind),2));
positive_negative_modulation(Patient,f,s,tr,1)=(nanmean(data_target(s,tr,:),3)>0);
end
for n=1:size(tmp_data_NonTarget,1)
data_non_target(n,tr,:)=resample(tmp_data_NonTarget(n,limit_wind),num_samples_keep,size(tmp_data_NonTarget(n,limit_wind),2));
positive_negative_modulation(Patient,f,n,tr,2)=(nanmean(data_non_target(n,tr,:),3)>0);
end
end
end
end
data_target_all{Patient,f}=data_target;
data_non_target_all{Patient,f}=data_non_target;
% data_target_all and data_non_target_all contain the data within
% and outside of target area
end
[Patient]
end
% Saving the data
save(['Effect_size_data_',ictal_or_inter,'_crcted_all_feats_100_to_10_points.mat'],'data_target_all','data_non_target_all','positive_negative_modulation','num_samples_keep','-v7.3')