We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
这是我的结果:
红色框里面 是对应的prompt。感觉毫不相关。。我用Juggernaut-X-v10,打了个简单的T2I gradio,是完全没问题的: 说明我的权重是对的。下面是我的gradio代码。(然而,在StoryDiffusion 链路中,这两个模型生成图像都不对呢?) `from diffusers import StableDiffusionXLPipeline import torch from gradio import Interface, Image, Dropdown, Slider import gradio as gr import spaces
model_id = "pretrained_models/RunDiffusion/Juggernaut-X-v10" pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda")
@spaces.GPU() def text_to_image(prompt, negative_prompt, steps, guidance_scale, progress=gr.Progress(track_tqdm=True)): image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=guidance_scale).images[0] return image #duplicate_button = gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gradio_interface = Interface( fn=text_to_image, allow_duplication=False, inputs=[ gr.Textbox(label="Prompt", lines=2, placeholder="Enter your prompt here..."), gr.Textbox(label="Negative Prompt", lines=2, placeholder="What to exclude from the image..."), gr.Slider(minimum=1, maximum=65, value=50, label="Steps", step=1), gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale", step=0.1) ], outputs=Image(type="pil", show_download_button=True), examples=[ ["1 woman, 28 yo , full body pose, smiling , super realistic , happy girl, perfect skin, blonde hair, perfect face , perfect body , wearing a small white bikini panties, cameltoe, real life, skinny but fit , 4k, high quality, (masterpiece)"], ], cache_examples=False, theme=gr.themes.Soft() ) gradio_interface.launch(share=False, server_name="127.0.0.1", server_port=7861,root_path='/proxy/7861/', enable_queue=True)`
The text was updated successfully, but these errors were encountered:
我用一些粘土风格的xl-based的模型出来也是效果不对,有一些是正确的,可能对某些模型不适配。
Sorry, something went wrong.
No branches or pull requests
这是我的结果:
红色框里面 是对应的prompt。感觉毫不相关。。我用Juggernaut-X-v10,打了个简单的T2I gradio,是完全没问题的:
说明我的权重是对的。下面是我的gradio代码。(然而,在StoryDiffusion 链路中,这两个模型生成图像都不对呢?)
`from diffusers import StableDiffusionXLPipeline
import torch
from gradio import Interface, Image, Dropdown, Slider
import gradio as gr
import spaces
model_id = "pretrained_models/RunDiffusion/Juggernaut-X-v10"
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
@spaces.GPU()
def text_to_image(prompt, negative_prompt, steps, guidance_scale, progress=gr.Progress(track_tqdm=True)):
image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=guidance_scale).images[0]
return image
#duplicate_button = gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gradio_interface = Interface(
fn=text_to_image,
allow_duplication=False,
inputs=[
gr.Textbox(label="Prompt", lines=2, placeholder="Enter your prompt here..."),
gr.Textbox(label="Negative Prompt", lines=2, placeholder="What to exclude from the image..."),
gr.Slider(minimum=1, maximum=65, value=50, label="Steps", step=1),
gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale", step=0.1)
],
outputs=Image(type="pil", show_download_button=True),
examples=[
["1 woman, 28 yo , full body pose, smiling , super realistic , happy girl, perfect skin, blonde hair, perfect face , perfect body , wearing a small white bikini panties, cameltoe, real life, skinny but fit , 4k, high quality, (masterpiece)"],
],
cache_examples=False,
theme=gr.themes.Soft()
)
gradio_interface.launch(share=False, server_name="127.0.0.1", server_port=7861,root_path='/proxy/7861/', enable_queue=True)`
The text was updated successfully, but these errors were encountered: