-
Notifications
You must be signed in to change notification settings - Fork 3
/
get_fps.py
124 lines (102 loc) · 4.33 KB
/
get_fps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import os.path as osp
import time
import mmcv
import numpy as np
import torch
from mmcv import Config
from mmcv.parallel import MMDataParallel
from mmcv.runner import load_checkpoint, wrap_fp16_model
from mmcv.cnn import get_model_complexity_info
import models
from mmseg.datasets import build_dataloader, build_dataset
from mmseg.models import build_segmentor
def parse_args():
parser = argparse.ArgumentParser(description='MMSeg benchmark a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--log-interval', type=int, default=50, help='interval of logging')
parser.add_argument(
'--work-dir',
help=('if specified, the results will be dumped '
'into the directory as json'))
parser.add_argument('--repeat-times', type=int, default=1)
args = parser.parse_args()
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
if args.work_dir is not None:
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
json_file = osp.join(args.work_dir, f'fps_{timestamp}.json')
else:
# use config filename as default work_dir if cfg.work_dir is None
work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
mmcv.mkdir_or_exist(osp.abspath(work_dir))
json_file = osp.join(work_dir, f'fps_{timestamp}.json')
repeat_times = args.repeat_times
# set cudnn_benchmark
torch.backends.cudnn.benchmark = False
cfg.model.pretrained = None
cfg.data.test.test_mode = True
benchmark_dict = dict(config=args.config, unit='img / s')
overall_fps_list = []
for time_index in range(repeat_times):
print(f'Run {time_index + 1}:')
# build the dataloader
# TODO: support multiple images per gpu (only minor changes are needed)
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=False,
shuffle=False)
# build the model and load checkpoint
cfg.model.train_cfg = None
if 'CLIP' in cfg.model.type:
cfg.model.class_names = list(dataset.CLASSES)
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg'))
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
if 'checkpoint' in args and osp.exists(args.checkpoint):
load_checkpoint(model, args.checkpoint, map_location='cpu')
model = MMDataParallel(model, device_ids=[0])
model.eval()
# the first several iterations may be very slow so skip them
num_warmup = 100
pure_inf_time = 0
total_iters = 1000
# benchmark with 200 image and take the average
for i, data in enumerate(data_loader):
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
model(return_loss=False, rescale=True, **data)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= num_warmup:
pure_inf_time += elapsed
if (i + 1) % args.log_interval == 0:
fps = (i + 1 - num_warmup) / pure_inf_time
print(f'Done image [{i + 1:<3}/ {total_iters}], '
f'fps: {fps:.2f} img / s')
if (i + 1) == total_iters:
fps = (i + 1 - num_warmup) / pure_inf_time
print(f'Overall fps: {fps:.2f} img / s\n')
benchmark_dict[f'overall_fps_{time_index + 1}'] = round(fps, 2)
overall_fps_list.append(fps)
break
benchmark_dict['average_fps'] = round(np.mean(overall_fps_list), 2)
benchmark_dict['fps_variance'] = round(np.var(overall_fps_list), 4)
print(f'Average fps of {repeat_times} evaluations: '
f'{benchmark_dict["average_fps"]}')
print(f'The variance of {repeat_times} evaluations: '
f'{benchmark_dict["fps_variance"]}')
mmcv.dump(benchmark_dict, json_file, indent=4)
if __name__ == '__main__':
main()