-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathgmg.py
184 lines (143 loc) · 5.42 KB
/
gmg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
""" GMG.
Description : Main code that calls all the APIs
Author: Achraf KHAZRI Ai Reasearch Engineer
Project: GMG
"""
import sys
import argparse
import os
import glob
# from ocr_api.ocr_engine import OcrEngine
from speech_api.speech_engine import SpeechEngine
# Arguments
parser = argparse.ArgumentParser()
parser.add_argument('--t', '-task', help="Classifier mode : task or train", type= str)
parser.add_argument('--m', '-method', help="Face detection method", type= str)
parser.add_argument('--i', '-input', help="input text object", type= str)
parser.add_argument('--l', '-language', help="output language", type= str)
parser.add_argument('--city', '-city', help="city name", type= str)
parser.add_argument('--country', '-country', help="country name", type= str)
# Get args
args = parser.parse_args()
# Object instance
se = SpeechEngine(args.l)
# Face detection
if args.t == "face_detection":
if args.m == 'opencv_haar':
from face_api.haar_cascade import OpenCVHaarFaceDetector
face_detector = OpenCVHaarFaceDetector()
faces = face_detector.cascade_classifier_detector(args.i)
elif args.m == 'dlib_hog':
from face_api.dlib_hog import DlibHOGFaceDetector
face_detector = DlibHOGFaceDetector()
faces = face_detector.face_detector(args.i)
elif args.m == 'dlib_cnn':
from face_api.dlib_cnn import DlibCNNFaceDetector
face_detector = DlibCNNFaceDetector()
faces = face_detector.detect_face(args.i)
elif args.m == 'mtcnn':
from face_api.mtcnn import TensorflowMTCNNFaceDetector
face_detector = TensorflowMTCNNFaceDetector()
faces = face_detector.detect_face(args.i)
elif args.m == 'mobilenet_ssd':
from face_api.ssd_mobilenet import TensoflowMobilNetSSDFaceDector
face_detector = TensoflowMobilNetSSDFaceDector()
faces = face_detector.detect_face(args.i)
else:
print("Error detection method !")
if args.l == "en":
if len(faces) == 0:
se.text2speech("we detected no body !")
elif len(faces) == 1:
se.text2speech("One person was detected !")
else:
se.text2speech(str(len(faces)) + " persons were detected !")
elif args.l == "fr":
if len(faces) == 0:
se.text2speech("Aucune personne a été détecté ! ")
elif len(faces) == 1:
se.text2speech("Une personne a été détecté !")
else:
se.text2speech(str(len(faces)) + " personnes ont été détectés ! ")
# Face recognition
elif args.t == "face_recognition":
from face_api.dlib_hog import DlibHOGFaceDetector
face_recogniser = DlibHOGFaceDetector()
person = face_recogniser.dlib_recognition(args.i)
if args.l == "en":
if person == "no body !":
se.text2speech("We couldn't recognise any person !")
else:
se.text2speech(person + " was recognised !")
elif args.l == "fr":
if person == "no body !":
se.text2speech("Aucunne personne a été reconnu !")
else:
se.text2speech(person + " a été reconnu !")
else:
se.text2speech("Error language !")
# Initialise dataset to images in face_api/data/dataset
elif args.t == "face_init":
from face_api.face_engine import DlibHOGFaceDetector
face_recogniser = DlibHOGFaceDetector()
person = face_recogniser.create_dataset()
# Add new person to dataset
elif args.t == "add_face":
from face_api.face_engine import DlibHOGFaceDetector
face_recogniser = DlibHOGFaceDetector()
face_recogniser.add_face(args.i)
# Ask about somthing using wikipedia
elif args.t == "wiki":
from infos_api.wiki_engine import WikiEngine
if args.l == "fr":
we = WikiEngine("fr")
infos = we.run(args.i, 3)
se.text2speech(infos)
elif args.l == "en":
we = WikiEngine("en")
infos = we.run(args.i, 3)
se.text2speech(infos)
else:
print("Error selectiong language !")
elif args.t == "news_latest":
from infos_api.news_engine import NewsEngine
news = NewsEngine()
articles, links = news.get_latest_articles()
se.text2speech("We are about to read the latest news articles posted by CNN.")
i = 1
for article in articles:
output = "Article number " + str(i) + ". " + article
se.text2speech(output)
i +=1
elif args.t == "news_article":
from infos_api.news_engine import NewsEngine
article_number = int(args.i)
news = NewsEngine()
articles, links = news.get_latest_articles()
article_txt = news.get_article(article_number)
article_title = articles[article_number]
se.text2speech("We are about to read the article titeled : " + articles[article_number - 1])
se.text2speech(article_txt)
se.text2speech("I hope you enjoyed the article from CNN news.")
elif args.t == "weather":
from infos_api.weather_engine import WeatherEngine
we = WeatherEngine(args.country, args.city)
weather = we.get_today_weather()
se.text2speech(weather)
elif args.t == "date":
from infos_api.time_engine import TimeEngine
te = TimeEngine()
date = te.date()
se.text2speech(date)
elif args.t == "time":
from infos_api.time_engine import TimeEngine
te = TimeEngine()
time = te.time()
se.text2speech(time)
elif args.t == "ocr":
from ocr_api.ocr_engine import OcrEngine
ocr = OcrEngine()
txt = ocr.run(args.i)
se.text2speech(txt)
else:
print("Error command !")