-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoptimizer.py
65 lines (58 loc) · 2.3 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
def get_optimizer(args, model):
"""Optimizer for different models
"""
if args.optim.lower() == 'sgd':
if args.model.lower() in ['fcn32s', 'fcn8s']:
optim = fcn_optim(model, args)
elif args.model.lower() in ['deeplab-largefov', 'deeplab-aspp-vgg']:
optim = deeplab_optim(model, args)
elif args.model.lower() in ['deeplab-aspp-resnet']:
optim = deeplabv2_optim(model, args)
else:
optim = torch.optim.SGD(
model.parameters(),
lr=args.lr,
momentum=args.beta1,
weight_decay=args.weight_decay)
elif args.optim.lower() == 'adam':
optim = torch.optim.Adam(
model.parameters(),
lr=args.lr,
betas=(args.beta1, 0.999),
weight_decay=args.weight_decay)
return optim
def fcn_optim(model, args):
"""optimizer for fcn32s and fcn8s
"""
optim = torch.optim.SGD(
[{'params': model.get_parameters(bias=False)},
{'params': model.get_parameters(bias=True), 'lr': args.lr * 2, 'weight_decay': 0}],
lr=args.lr,
momentum=args.beta1,
weight_decay=args.weight_decay)
return optim
def deeplab_optim(model, args):
"""optimizer for deeplab-v1 and deeplab-v2-vgg
"""
optim = torch.optim.SGD(
[{'params': model.get_parameters(bias=False, score=False)},
{'params': model.get_parameters(bias=True, score=False), 'lr': args.lr * 2, 'weight_decay': 0},
{'params': model.get_parameters(bias=False, score=True), 'lr': args.lr * 10},
{'params': model.get_parameters(bias=True, score=True), 'lr': args.lr * 20, 'weight_decay': 0}],
lr=args.lr,
momentum=args.beta1,
weight_decay=args.weight_decay)
return optim
def deeplabv2_optim(model, args):
"""optimizer for deeplab-v2-resnet
"""
optim = torch.optim.SGD(
[{'params': model.get_parameters(bias=False, score=False)},
{'params': model.get_parameters(bias=False, score=True), 'lr': args.lr * 10},
{'params': model.get_parameters(bias=True, score=True), 'lr': args.lr * 20, 'weight_decay': 0}],
lr=args.lr,
momentum=args.beta1,
weight_decay=args.weight_decay)
return optim