-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimizer.py
67 lines (59 loc) · 2.02 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
import torch.nn as nn
def get_optimizer(args, model):
if args.optim.lower() == 'sgd':
if args.model.lower() in ['fcn32s', 'fcn8s']:
optim = fcn_optim(model, args)
elif args.model.lower() in ['fcn8smulti-gnn', 'fcn8smulti-gnn2']:
optim = gnn_optim(model, args)
elif args.model.lower() in ['multi-gnn1']:
optim = deep_gnn_optim(model, args)
elif args.model.lower() in ['fcn8smulti']:
optim = fcn_multi_optim(model, args)
else:
optim = torch.optim.SGD(
model.parameters(),
lr=args.lr,
momentum=args.beta1,
weight_decay=args.weight_decay)
return optim
# FCN
def gnn_optim(model, args):
optim = torch.optim.SGD(
[{'params': model.get_parameters(double=False)},
{'params': model.get_parameters(double=True), 'lr': args.lr * 10}],
lr=args.lr,
momentum=args.beta1,
weight_decay=args.weight_decay)
return optim
# Deeplab
def deep_gnn_optim(model, args):
# optim = torch.optim.SGD(
# [{'params': model.get_parameters(score=False)},
# {'params': model.get_parameters(score=True), 'lr': args.lr * 1}],
# lr=args.lr,
# momentum=args.beta1,
# weight_decay=args.weight_decay)
optim = torch.optim.SGD(
model.parameters(),
lr=args.lr,
momentum=args.beta1,
weight_decay=args.weight_decay)
return optim
def fcn_multi_optim(model, args):
optim = torch.optim.SGD(
[{'params': model.get_parameters(double=False)},
{'params': model.get_parameters(double=True), 'lr': args.lr * 10}],
lr=args.lr,
momentum=args.beta1,
weight_decay=args.weight_decay)
return optim
def fcn_optim(model, args):
"""optimizer for fcn32s and fcn8s
"""
optim = torch.optim.SGD(
model.get_parameters(),
lr=args.lr,
momentum=args.beta1,
weight_decay=args.weight_decay)
return optim