forked from antononcube/MathematicaForPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ParetoPrincipleAdherence.m
213 lines (149 loc) · 8.24 KB
/
ParetoPrincipleAdherence.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
(*
Pareto principle adherence Mathematica package
Copyright (C) 2019 Anton Antonov
BSD 3-Clause License
Copyright (c) 2019, Anton Antonov
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Written by Anton Antonov,
antononcube @ gmail . com,
Windermere, Florida, USA.
*)
(*
Mathematica is (C) Copyright 1988-2019 Wolfram Research, Inc.
Protected by copyright law and international treaties.
Unauthorized reproduction or distribution subject to severe civil
and criminal penalties.
Mathematica is a registered trademark of Wolfram Research, Inc.
*)
(*
# In brief
The adherence of a data vector to the Pareto principle can be easily verified with the plots of ParetoPrinciplePlot.
- ParetoPrinciplePlot[vec] plots the normalized cumulative sum of the reverse-sorted vec.
- The argument data in ParetoPrinciplePlot[data, opts]
- can be a numerical list,
- a list of numerical lists, or
- a list of numerical lists wrapped with tooltips and callouts.
- For a given numerical vector vec the Pareto principle plot data is computed with the formula:
Accumulate[ReverseSort[vec]]/Total[vec].
- ParetoPrinciplePlot takes all options of ListPlot.
- The option "ParetoGridLines" can be used to define Pareto principle specific grid lines.
- The option "Tooltip" can be used to specify the use of automatic Tooltip wrappers.
- Here is the options table:
"ParetoGridLines" Automatic Pareto-specific grid lines.
"Tooltip" True Should automatic Tooltip wrappers be placed?
Anton Antonov
Windermere, FL, USA
2019-12-04
*)
BeginPackage["ParetoPrincipleAdherence`"];
ParetoPrinciplePlot::usage = "ParetoPrinciplePlot[data, opts] makes Pareto principle adherence plots. \
The argument data can be a numerical list, a list of numerical lists, \
or a list of numerical lists wrapped with tooltips and callouts. \
Takes all options of ListPlot.";
Begin["`Private`"];
(***********************************************************)
(* Pareto help functions *)
(***********************************************************)
Clear[ParetoDataSpecQ];
ParetoDataSpecQ[data_] :=
MatchQ[data, {((Tooltip | Callout)[(Tooltip | Callout)[{_?NumericQ ...}, __], __] | (Tooltip | Callout)[{_?NumericQ ...}, __] | {_?NumericQ ...}) ..}] || MatchQ[data, {{_?NumericQ ...} ..}];
Clear[ParetoGetData];
ParetoGetData[data : {(Tooltip | Callout)[{_?NumericQ ...}, __] ..}] := data[[All, 1]];
ParetoGetData[data : {((Tooltip | Callout)[(Tooltip | Callout)[{_?NumericQ ...}, __], __] | (Tooltip | Callout)[{_?NumericQ ..}, __] | {_?NumericQ ...}) ..}] :=
Cases[data, {_?NumericQ ...}, 3];
ParetoGetData[data : {{_?NumericQ ...} ..}] := data;
(***********************************************************)
(* ParetoPrinciplePlot *)
(***********************************************************)
Clear[ParetoPrinciplePlot];
ParetoPrinciplePlot::args = "The first argument is expected to be a numerical vector or a list of numerical vectors.";
ParetoPrinciplePlot::pgl = "The value of the option \"ParetoGridLines\" is expected to be Automatic or \
a list of two numerical vectors, each with numbers between 0 and 1.";
Options[ParetoPrinciplePlot] = Join[{"Tooltip" -> True, "ParetoGridLines" -> Automatic}, Options[ListPlot]];
ParetoPrinciplePlot[dataVec : {_?NumericQ ...}, opts : OptionsPattern[]] :=
ParetoPrinciplePlot[{dataVec}, opts];
ParetoPrinciplePlot[dataVecs : {{_?NumericQ ...} ..},
opts : OptionsPattern[]] :=
Block[{tooltipQ, t},
tooltipQ = TrueQ[OptionValue[ParetoPrinciplePlot, "Tooltip"]];
t = Map[Accumulate[#] / Total[#] &, ReverseSort /@ dataVecs];
If[tooltipQ,
t = MapThread[Tooltip, {t, Range[Length[dataVecs]]}]
];
ParetoPrinciplePlotFrame[t, FilterRules[{opts}, Options[ParetoPrinciplePlotFrame]]]
];
ParetoPrinciplePlot[dataVecs : {(Tooltip | Callout)[{_?NumericQ ...}, __] ..},
opts : OptionsPattern[]] :=
Block[{t},
t = Map[#[[0]][(Accumulate[#] / Total[#] &)[ReverseSort[#[[1]]]], Sequence @@ Rest[#]] &, dataVecs];
ParetoPrinciplePlotFrame[t, FilterRules[{opts}, Options[ParetoPrinciplePlotFrame]]]
];
ParetoPrinciplePlot[
dataVecs : {((Tooltip | Callout)[(Tooltip | Callout)[{_?NumericQ ...}, __], __] | (Tooltip | Callout)[{_?NumericQ ...}, __] | {_?NumericQ ...}) ..},
opts : OptionsPattern[]] :=
Block[{t},
t = dataVecs /.
x : {_?NumberQ ..} :> (Accumulate[#] / Total[#] &)[ReverseSort[x]];
ParetoPrinciplePlotFrame[t,
FilterRules[{opts}, Options[ParetoPrinciplePlotFrame]]]
];
ParetoPrinciplePlot[___] :=
Block[{},
Message[ParetoPrinciplePlot::args];
$Failed
];
(***********************************************************)
(* ParetoPrinciplePlotFrame *)
(***********************************************************)
Clear[ParetoPrinciplePlotFrame];
Options[ParetoPrinciplePlotFrame] = Join[{"MaxParetoFraction" -> 0.5, "ParetoGridLines" -> Automatic}, Options[ListPlot]];
ParetoPrinciplePlotFrame[t_?ParetoDataSpecQ, opts : OptionsPattern[]] :=
Block[{data = ParetoGetData[t], maxLen, paretoGridSpec, gridSpec},
paretoGridSpec = OptionValue[ParetoPrinciplePlotFrame, "ParetoGridLines"];
If[TrueQ[paretoGridSpec === Automatic], paretoGridSpec = {Range[0, 0.5, 0.1], {0.8}}];
If[MatchQ[paretoGridSpec, {Automatic, _}], paretoGridSpec = {Range[0, 1, 0.1], paretoGridSpec[[2]]}];
If[MatchQ[paretoGridSpec, {_, Automatic}], paretoGridSpec = {paretoGridSpec[[1]], Range[0, 1, 0.1]}];
If[TrueQ[paretoGridSpec === None], paretoGridSpec = {{}, {}}];
If[MatchQ[paretoGridSpec, {None, _}], paretoGridSpec = {{}, paretoGridSpec[[2]]}];
If[MatchQ[paretoGridSpec, {_, None}], paretoGridSpec = {paretoGridSpec[[1]], {}}];
Which[
! MatchQ[paretoGridSpec, {{_?NumericQ ...}, {_?NumericQ ...}}],
Message[ParetoPrinciplePlot::pgl];
paretoGridSpec = {Range[0.1, 0.5, 0.1], {0.8}},
! (VectorQ[paretoGridSpec[[1]], 0 <= # <= 1 &] && VectorQ[paretoGridSpec[[2]], 0 <= # <= 1 &]),
Message[ParetoPrinciplePlot::pgl];
paretoGridSpec = Map[Sort[Select[#, 0 <= # <= 1 &]] &, paretoGridSpec],
True,
paretoGridSpec = Map[Sort[Select[#, 0 <= # <= 1 &]] &, paretoGridSpec];
];
maxLen = Max[Length /@ data];
gridSpec = {maxLen * paretoGridSpec[[1]], paretoGridSpec[[2]]};
ListPlot[t,
FilterRules[{opts}, Options[ListPlot]],
PlotRange -> All,
GridLines -> gridSpec,
Frame -> True,
FrameTicks -> {{Automatic, Automatic}, {Automatic, Table[{maxLen * c, ToString[Round[100 c]] <> "%"}, {c, paretoGridSpec[[1]]}]}}]
];
End[]; (* `Private` *)
EndPackage[]