forked from antononcube/MathematicaForPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IndependentComponentAnalysis.m
349 lines (244 loc) · 10.6 KB
/
IndependentComponentAnalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
(*
Independent Component Analysis Mathematica package
Copyright (C) 2016 Anton Antonov
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Written by Anton Antonov,
antononcube @ gmail.com,
Windermere, Florida, USA.
*)
(*
Mathematica is (C) Copyright 1988-2016 Wolfram Research, Inc.
Protected by copyright law and international treaties.
Unauthorized reproduction or distribution subject to severe civil
and criminal penalties.
Mathematica is a registered trademark of Wolfram Research, Inc.
*)
(* :Title: IndependentComponentAnalysis *)
(* :Context: IndependentComponentAnalysis` *)
(* :Author: Anton Antonov *)
(* :Date: 2016-05-14 *)
(* :Package Version: 0.8 *)
(* :Mathematica Version: 10.4.1 *)
(* :Copyright: (c) 2016 Anton Antonov *)
(* :Keywords: Independent Component Analysis, ICA, FastICA, matrix factorization *)
(* :Discussion: *)
(* Version 0.8 *)
(*
This package provides functions for performing Independent Component Analysis (ICA) over matrices.
The function IndependentComponentAnalysis is intended to be the front of different algorithms for ICA.
ICA can be seen as a dimension reduction or matrix factorization technique. Because of that the function
IndependentComponentAnalysis returns a pair of matrices the product of which should approximate the first
argument. This is different from the result of R's FastICA. Because of this a separate function, FastICA,
is provided.
The first version of this package implements the algorithm FastICA.
The implementation follows closely the code in the R library FastICA.R, see
https://cran.r-project.org/web/packages/fastICA/index.html ,
and the article
A. Hyvarinen and E. Oja (2000) Independent Component Analysis: Algorithms and Applications,
Neural Networks, 13(4-5):411-430 .
*********************
Usage example
**********************
In the code below the columns of S have the independent components, the rows are samples.
The matrix A provides linear mixing. The matrix M has the mixed signals.
The independent component analysis functions should be fairly fast.
(* Signal functions *)
Clear[s1, s2, s3]
s1[t_] := Sin[600 \[Pi] t/10000 + 6*Cos[120 \[Pi] t/10000]] + 1.2
s2[t_] := Sin[\[Pi] t/10] + 1.2
s3[t_?NumericQ] := (((QuotientRemainder[t, 23][[2]] - 11)/9)^5 + 2.8)/2 + 0.2
(* Mixing matrix *)
A = {{0.44, 0.2, 0.31}, {0.45, 0.8, 0.23}, {0.12, 0.32, 0.71}};
(* Signals matrix *)
nSize = 600;
S = Table[{s1[t], s2[t], s3[t]}, {t, 0, nSize, 0.5}];
Dimensions[S]
(* {1201, 3} *)
(* Mixed signals matrix *)
M = S.A;
Grid[{Map[ListLinePlot[#, PlotRange -> All, ImageSize -> 250] &, Transpose@S]}]
(* Mixed signals *)
Grid[{Map[ListLinePlot[#, PlotRange -> All, ImageSize -> 250] &, Transpose@M]}]
(* ICA function call *)
AbsoluteTiming[
res = IndependentComponentAnalysis[M, 3];
]
(* {0.010782, Null} *)
(* Approximation norm *)
Norm[M - Dot @@ res]
(* 5.25579*10^-14 *)
(* Visualize the source signals result *)
ListLinePlot[#, ImageSize -> Medium] & /@ Transpose[res[[1]]]
TODO:
1. Implement symmetric FastICA using logcosh/exp/etc approx. to neg-entropy function.
2. Implement NNMF based method for ICA.
3. Handling high precision matrices.
This file was created by Mathematica Plugin for IntelliJ IDEA.
*)
BeginPackage["IndependentComponentAnalysis`"];
IndependentComponentAnalysis::usage = "IndependentComponentsAnalysis[ X_?MatrixQ, k_Integer ] \
independent components analysis (factorization) over the matrix X for k number of components.";
FastICA::usage = "FastICA[X_?MatrixQ, k_Integer, opts___] applies the algorithm FastICA to X in order to find \
k independent components. Returns an association with the corresponding matrix names as keys.";
Begin["`Private`"];
Clear[IndependentComponentAnalysis, FastICA];
IndependentComponentAnalysis::nomat = "A matrix is expected as a first argument.";
IndependentComponentAnalysis::noint = "A positive integer no greater than the number of columns of the matrix \
is expected as a second argument.";
IndependentComponentAnalysis::nometh = "Unknown method.";
FastICA::nomat = "A matrix is expected as a first argument.";
FastICA::noint = "A positive integer no greater than the number of columns of the matrix \
is expected as a second argument.";
FastICA::unmat = "The un-mixing matrix option value should be Automatic or a square matrix corresponding \
to the number of components.";
Options[IndependentComponentAnalysis] = { Method -> "FastICA", MaxSteps -> 200, PrecisionGoal -> 6 };
IndependentComponentAnalysis[ X_, k_, opts : OptionsPattern[] ] :=
Block[{method, maxSteps, pgoal, mopts, res},
If[ !MatrixQ[X],
Message[IndependentComponentAnalysis::nomat];
Return[$Failed]
];
If[ !IntegerQ[k] || !( 1 <= k <= Dimensions[X][[2]] ),
Message[IndependentComponentAnalysis::noint];
Return[$Failed]
];
method = OptionValue[IndependentComponentAnalysis, Method];
maxSteps = OptionValue[IndependentComponentAnalysis, MaxSteps];
pgoal = OptionValue[IndependentComponentAnalysis, PrecisionGoal];
If[ method == "FastICA" || ( ListQ[method] && method[[1]] == "FastICA" ),
If[ ListQ[method], mopts = DeleteCases[method, "FastICA"], mopts = {} ];
mopts = Join[mopts, {MaxSteps->maxSteps, PrecisionGoal->pgoal}];
res = FastICA[ X, k, "RFastICAResult" -> False, Sequence @@ mopts ];
If[AssociationQ[res], {res["S"], res["A"]}, res],
(* ELSE *)
Message[ IndependentComponentAnalysis::nometh ];
$Failed
]
];
Options[FastICA] =
{"NonGaussianityFunction" -> Automatic, "NegEntropyFactor" -> 1, "InitialUnmixingMartix" -> Automatic,
"RowNorm" -> False, MaxSteps -> 200, PrecisionGoal -> 6, "RFastICAResult" -> True };
FastICA[ X_?MatrixQ, k_Integer, opts : OptionsPattern[] ] :=
Block[{nonGaussFunc, alpha, rowNormQ, unmixMatSpec, maxSteps, pgoal,
n, m, ncomp = k, wInitMat, V, XU, XD, XV, XD1, K, X1, W, aMat, wMat, S, A },
nonGaussFunc = OptionValue[FastICA, "NonGaussianityFunction"];
alpha = OptionValue[FastICA, "NegEntropyFactor"];
rowNormQ = OptionValue[FastICA, "RowNorm"];
unmixMatSpec = OptionValue[FastICA, "InitialUnmixingMartix"];
maxSteps = OptionValue[FastICA, MaxSteps];
pgoal = OptionValue[FastICA, PrecisionGoal];
If[ !MatrixQ[X],
Message[FastICA::nomat];
Return[$Failed]
];
If[ !IntegerQ[ncomp] || k > Dimensions[X][[2]],
Message[FastICA::noint];
Return[$Failed]
];
If[ TrueQ[nonGaussFunc===Automatic],
nonGaussFunc = Log[Cosh[#]]&;
];
Which[
TrueQ[unmixMatSpec===Automatic],
wInitMat =
Partition[RandomVariate[NormalDistribution[], ncomp^2], ncomp],
TrueQ[ MatrixQ[unmixMatSpec] && Dimensions[unmixMatSpec] == {ncomp,ncomp}],
wInitMat = unmixMatSpec,
True,
Message[FastICA::unmat];
Return[$Failed]
];
{n, m} = Dimensions[X];
(* Centering *)
If[rowNormQ,
X1 = Standardize[#, Mean, StandardDeviation] & /@ Transpose[X],
X1 = Standardize[#, Mean, 1 &] & /@ Transpose[X]
];
If[ TrueQ[ Head[X]===SparseArray ], X1 = SparseArray[X1] ];
(*Whitening*)
V = X1.Transpose[X1]/n;
{XU, XD, XV} = SingularValueDecomposition[V];
XD1 = DiagonalMatrix[ 1/Sqrt[Map[If[# < 10^-12, 1, #] &, Diagonal[XD]]]];
K = XD1.Transpose[XU];
K = K[[1 ;; ncomp, All]];
If[ TrueQ[ Head[X]===SparseArray ], K = SparseArray[K] ];
(*X1 = K.X1;*)
aMat = ICADeflation[ K.X1, ncomp, wInitMat, nonGaussFunc, pgoal, alpha, maxSteps];
If[ TrueQ[ Head[X]===SparseArray ], aMat = SparseArray[aMat] ];
(*wMat = aMat . K;*)
(*S = wMat . Transpose[X];*)
(*A = Transpose[wMat] . Inverse[ wMat . Transpose[wMat] ] ;*)
(*AssociationThread[ {"K","W","A","S"}->Transpose /@ { K, aMat, A, S} ]*)
(* return(list(X = t(X), K = t(K), W = t(a), A = t(A), S = t(S))) *)
K = Transpose[K];
aMat = Transpose[aMat];
X1 = Transpose[X1];
wMat = K . aMat;
A = Transpose[wMat.Inverse[Transpose[wMat].wMat]];
(*Print["Head/@{X1, K, aMat, wMat, A, S}] :", Head/@{X1, K, aMat, wMat, A, S} ];*)
(*If[ TrueQ[ Head[X]===SparseArray ], A = SparseArray[A] ];*)
If[ OptionValue[FastICA, "RFastICAResult"],
S = X1 . wMat;
AssociationThread[ {"X","K","W","A","S"}-> { X1, K, aMat, A, S} ],
(*ELSE*)
S = X . wMat;
AssociationThread[ {"K","W","A","S"}-> { K, aMat, A, S} ]
]
];
Clear[ICADeflation];
ICADeflation[ X_?MatrixQ, ncomp_Integer, wInitMat_?MatrixQ, func_, pgoal_?NumberQ, alpha_?NumberQ, maxSteps_Integer ] :=
Block[{n, m, w, w1, W, g, gp, t, k, nStep=0,
wx, gwx, gwxMat, xgwxMat, gpwx, v1, v2, wd },
{n,m} = Dimensions[ X ];
g = func';
gp = func'';
W = ConstantArray[0,{ncomp,ncomp}];
Do[
w = wInitMat[[i,All]];
If[ i > 1,
t = ConstantArray[0,Length[w]];
Do[
k = w . W[[j,All]];
t = t + k * W[[j,All]];
, {j,1,i-1}];
w = w - t;
];
w = w / Norm[w];
wd = 1000;
While[ wd > 10^-pgoal && nStep < maxSteps,
nStep ++;
wx = w.X;
gwx = g[alpha*wx];
gwxMat = Table[gwx, {ncomp}];
xgwxMat = X*gwxMat;
v1 = Mean /@ xgwxMat;
gpwx = alpha*g[alpha*wx];
v2 = Mean[gpwx]*w;
w1 = v1 - v2;
If[ i > 1,
t = ConstantArray[0,Length[w1]];
Do[
k = w1 . W[[j,All]];
t = t + k * W[[j,All]];
, {j,1,i-1}];
w1 = w1 - t;
];
w1 = w1 / Norm[w1];
wd = Abs[ Abs[w.w1] - 1 ];
w = w1;
]; (* While *)
W[[i,All]] = w;
,{i,1,ncomp}]; (*Do*)
W
];
End[]; (* `Private` *)
EndPackage[]