-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
base_model.py
1193 lines (1093 loc) · 43.6 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import asyncio
import json
import logging
import os
import pathlib
import base64
import shutil
import sys
import traceback
from collections import deque
from enum import Enum
from itertools import islice
from threading import Condition, Thread
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
import PIL
from io import BytesIO
import aiohttp
import colorama
import commentjson as cjson
import requests
import urllib3
from duckduckgo_search import DDGS
from huggingface_hub import hf_hub_download
from langchain.callbacks.base import BaseCallbackHandler, BaseCallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chat_models.base import BaseChatModel
from langchain.input import print_text
from langchain.schema import (AgentAction, AgentFinish, AIMessage, BaseMessage,
HumanMessage, LLMResult, SystemMessage)
from tqdm import tqdm
from .. import shared
from ..config import retrieve_proxy
from ..index_func import *
from ..presets import *
from ..utils import *
class CallbackToIterator:
def __init__(self):
self.queue = deque()
self.cond = Condition()
self.finished = False
def callback(self, result):
with self.cond:
self.queue.append(result)
self.cond.notify() # Wake up the generator.
def __iter__(self):
return self
def __next__(self):
with self.cond:
# Wait for a value to be added to the queue.
while not self.queue and not self.finished:
self.cond.wait()
if not self.queue:
raise StopIteration()
return self.queue.popleft()
def finish(self):
with self.cond:
self.finished = True
self.cond.notify() # Wake up the generator if it's waiting.
def get_action_description(text):
match = re.search("```(.*?)```", text, re.S)
json_text = match.group(1)
# 把json转化为python字典
json_dict = json.loads(json_text)
# 提取'action'和'action_input'的值
action_name = json_dict["action"]
action_input = json_dict["action_input"]
if action_name != "Final Answer":
return f'<!-- S O PREFIX --><p class="agent-prefix">{action_name}: {action_input}\n</p><!-- E O PREFIX -->'
else:
return ""
class ChuanhuCallbackHandler(BaseCallbackHandler):
def __init__(self, callback) -> None:
"""Initialize callback handler."""
self.callback = callback
def on_agent_action(
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
) -> Any:
self.callback(get_action_description(action.log))
def on_tool_end(
self,
output: str,
color: Optional[str] = None,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
"""If not the final action, print out observation."""
# if observation_prefix is not None:
# self.callback(f"\n\n{observation_prefix}")
# self.callback(output)
# if llm_prefix is not None:
# self.callback(f"\n\n{llm_prefix}")
if observation_prefix is not None:
logging.info(observation_prefix)
self.callback(output)
if llm_prefix is not None:
logging.info(llm_prefix)
def on_agent_finish(
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
) -> None:
# self.callback(f"{finish.log}\n\n")
logging.info(finish.log)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
self.callback(token)
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any,
) -> Any:
"""Run when a chat model starts running."""
pass
class ModelType(Enum):
Unknown = -1
OpenAI = 0
ChatGLM = 1
LLaMA = 2
XMChat = 3
StableLM = 4
MOSS = 5
YuanAI = 6
Minimax = 7
ChuanhuAgent = 8
GooglePaLM = 9
LangchainChat = 10
Midjourney = 11
Spark = 12
OpenAIInstruct = 13
Claude = 14
Qwen = 15
OpenAIVision = 16
ERNIE = 17
DALLE3 = 18
GoogleGemini = 19
GoogleGemma = 20
Ollama = 21
@classmethod
def get_type(cls, model_name: str):
model_type = None
model_name_lower = model_name.lower()
if "gpt" in model_name_lower:
if "instruct" in model_name_lower:
model_type = ModelType.OpenAIInstruct
elif "vision" in model_name_lower:
model_type = ModelType.OpenAIVision
else:
model_type = ModelType.OpenAI
elif "chatglm" in model_name_lower:
model_type = ModelType.ChatGLM
elif "ollama" in model_name_lower:
model_type = ModelType.Ollama
elif "llama" in model_name_lower or "alpaca" in model_name_lower:
model_type = ModelType.LLaMA
elif "xmchat" in model_name_lower:
model_type = ModelType.XMChat
elif "stablelm" in model_name_lower:
model_type = ModelType.StableLM
elif "moss" in model_name_lower:
model_type = ModelType.MOSS
elif "yuanai" in model_name_lower:
model_type = ModelType.YuanAI
elif "minimax" in model_name_lower:
model_type = ModelType.Minimax
elif "川虎助理" in model_name_lower:
model_type = ModelType.ChuanhuAgent
elif "palm" in model_name_lower:
model_type = ModelType.GooglePaLM
elif "gemini" in model_name_lower:
model_type = ModelType.GoogleGemini
elif "midjourney" in model_name_lower:
model_type = ModelType.Midjourney
elif "azure" in model_name_lower or "api" in model_name_lower:
model_type = ModelType.LangchainChat
elif "星火大模型" in model_name_lower:
model_type = ModelType.Spark
elif "claude" in model_name_lower:
model_type = ModelType.Claude
elif "qwen" in model_name_lower:
model_type = ModelType.Qwen
elif "ernie" in model_name_lower:
model_type = ModelType.ERNIE
elif "dall" in model_name_lower:
model_type = ModelType.DALLE3
elif "gemma" in model_name_lower:
model_type = ModelType.GoogleGemma
else:
model_type = ModelType.LLaMA
return model_type
def download(repo_id, filename, retry=10):
if os.path.exists("./models/downloaded_models.json"):
with open("./models/downloaded_models.json", "r") as f:
downloaded_models = json.load(f)
if repo_id in downloaded_models:
return downloaded_models[repo_id]["path"]
else:
downloaded_models = {}
while retry > 0:
try:
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir="models",
resume_download=True,
)
downloaded_models[repo_id] = {"path": model_path}
with open("./models/downloaded_models.json", "w") as f:
json.dump(downloaded_models, f)
break
except:
print("Error downloading model, retrying...")
retry -= 1
if retry == 0:
raise Exception("Error downloading model, please try again later.")
return model_path
class BaseLLMModel:
def __init__(
self,
model_name,
system_prompt=INITIAL_SYSTEM_PROMPT,
temperature=1.0,
top_p=1.0,
n_choices=1,
stop=[],
max_generation_token=None,
presence_penalty=0,
frequency_penalty=0,
logit_bias=None,
user="",
single_turn=False,
) -> None:
self.history = []
self.all_token_counts = []
self.model_type = ModelType.get_type(model_name)
try:
self.model_name = MODEL_METADATA[model_name]["model_name"]
except:
self.model_name = model_name
try:
self.multimodal = MODEL_METADATA[model_name]["multimodal"]
except:
self.multimodal = False
if max_generation_token is None:
try:
max_generation_token = MODEL_METADATA[model_name]["max_generation"]
except:
pass
try:
self.token_upper_limit = MODEL_METADATA[model_name]["token_limit"]
except KeyError:
self.token_upper_limit = DEFAULT_TOKEN_LIMIT
self.interrupted = False
self.system_prompt = system_prompt
self.api_key = None
self.need_api_key = False
self.history_file_path = get_first_history_name(user)
self.user_name = user
self.chatbot = []
self.default_single_turn = single_turn
self.default_temperature = temperature
self.default_top_p = top_p
self.default_n_choices = n_choices
self.default_stop_sequence = stop
self.default_max_generation_token = max_generation_token
self.default_presence_penalty = presence_penalty
self.default_frequency_penalty = frequency_penalty
self.default_logit_bias = logit_bias
self.default_user_identifier = user
self.single_turn = single_turn
self.temperature = temperature
self.top_p = top_p
self.n_choices = n_choices
self.stop_sequence = stop
self.max_generation_token = max_generation_token
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.logit_bias = logit_bias
self.user_identifier = user
self.metadata = {}
def get_answer_stream_iter(self):
"""Implement stream prediction.
Conversations are stored in self.history, with the most recent question in OpenAI format.
Should return a generator that yields the next word (str) in the answer.
"""
logging.warning(
"Stream prediction is not implemented. Using at once prediction instead."
)
response, _ = self.get_answer_at_once()
yield response
def get_answer_at_once(self):
"""predict at once, need to be implemented
conversations are stored in self.history, with the most recent question, in OpenAI format
Should return:
the answer (str)
total token count (int)
"""
logging.warning("at once predict not implemented, using stream predict instead")
response_iter = self.get_answer_stream_iter()
count = 0
for response in response_iter:
count += 1
return response, sum(self.all_token_counts) + count
def billing_info(self):
"""get billing infomation, inplement if needed"""
# logging.warning("billing info not implemented, using default")
return BILLING_NOT_APPLICABLE_MSG
def count_token(self, user_input):
"""get token count from input, implement if needed"""
# logging.warning("token count not implemented, using default")
return len(user_input)
def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""):
def get_return_value():
return chatbot, status_text
status_text = i18n("开始实时传输回答……")
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
user_token_count = self.count_token(inputs)
self.all_token_counts.append(user_token_count)
logging.debug(f"输入token计数: {user_token_count}")
stream_iter = self.get_answer_stream_iter()
if display_append:
display_append = (
'\n\n<hr class="append-display no-in-raw" />' + display_append
)
partial_text = ""
token_increment = 1
for partial_text in stream_iter:
if type(partial_text) == tuple:
partial_text, token_increment = partial_text
chatbot[-1] = (chatbot[-1][0], partial_text + display_append)
self.all_token_counts[-1] += token_increment
status_text = self.token_message()
yield get_return_value()
if self.interrupted:
self.recover()
break
self.history.append(construct_assistant(partial_text))
def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""):
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
if fake_input is not None:
user_token_count = self.count_token(fake_input)
else:
user_token_count = self.count_token(inputs)
self.all_token_counts.append(user_token_count)
ai_reply, total_token_count = self.get_answer_at_once()
self.history.append(construct_assistant(ai_reply))
if fake_input is not None:
self.history[-2] = construct_user(fake_input)
chatbot[-1] = (chatbot[-1][0], ai_reply + display_append)
if fake_input is not None:
self.all_token_counts[-1] += count_token(construct_assistant(ai_reply))
else:
self.all_token_counts[-1] = total_token_count - sum(self.all_token_counts)
status_text = self.token_message()
return chatbot, status_text
def handle_file_upload(self, files, chatbot, language):
"""if the model accepts multi modal input, implement this function"""
status = gr.Markdown.update()
image_files = []
other_files = []
if files:
for f in files:
if f.name.endswith(IMAGE_FORMATS):
image_files.append(f)
else:
other_files.append(f)
if self.multimodal:
if image_files:
chatbot.extend([(((image.name, None)), None) for image in image_files])
self.history.extend([construct_image(image.name) for image in image_files])
else:
gr.Warning(i18n("该模型不支持多模态输入"))
if other_files:
try:
construct_index(self.api_key, file_src=files)
status = i18n("索引构建完成")
except Exception as e:
import traceback
traceback.print_exc()
status = i18n("索引构建失败!") + str(e)
if other_files:
other_files = [f.name for f in other_files]
else:
other_files = None
return gr.File.update(value=other_files), chatbot, status
def summarize_index(self, files, chatbot, language):
status = gr.Markdown.update()
if files:
index = construct_index(self.api_key, file_src=files)
status = i18n("总结完成")
logging.info(i18n("生成内容总结中……"))
os.environ["OPENAI_API_KEY"] = self.api_key
from langchain.callbacks import StdOutCallbackHandler
from langchain.chains.summarize import load_summarize_chain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
prompt_template = (
"Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN "
+ language
+ ":"
)
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
llm = ChatOpenAI()
chain = load_summarize_chain(
llm,
chain_type="map_reduce",
return_intermediate_steps=True,
map_prompt=PROMPT,
combine_prompt=PROMPT,
)
summary = chain(
{"input_documents": list(index.docstore.__dict__["_dict"].values())},
return_only_outputs=True,
)["output_text"]
print(i18n("总结") + f": {summary}")
chatbot.append([i18n("上传了") + str(len(files)) + "个文件", summary])
return chatbot, status
def prepare_inputs(
self,
real_inputs,
use_websearch,
files,
reply_language,
chatbot,
load_from_cache_if_possible=True,
):
display_append = []
limited_context = False
if type(real_inputs) == list:
fake_inputs = real_inputs[0]["text"]
else:
fake_inputs = real_inputs
if files:
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores.base import VectorStoreRetriever
limited_context = True
msg = "加载索引中……"
logging.info(msg)
index = construct_index(
self.api_key,
file_src=files,
load_from_cache_if_possible=load_from_cache_if_possible,
)
assert index is not None, "获取索引失败"
msg = "索引获取成功,生成回答中……"
logging.info(msg)
with retrieve_proxy():
retriever = VectorStoreRetriever(
vectorstore=index, search_type="similarity", search_kwargs={"k": 6}
)
# retriever = VectorStoreRetriever(vectorstore=index, search_type="similarity_score_threshold", search_kwargs={
# "k": 6, "score_threshold": 0.2})
try:
relevant_documents = retriever.get_relevant_documents(fake_inputs)
except AssertionError:
return self.prepare_inputs(
fake_inputs,
use_websearch,
files,
reply_language,
chatbot,
load_from_cache_if_possible=False,
)
reference_results = [
[d.page_content.strip("�"), os.path.basename(d.metadata["source"])]
for d in relevant_documents
]
reference_results = add_source_numbers(reference_results)
display_append = add_details(reference_results)
display_append = "\n\n" + "".join(display_append)
if type(real_inputs) == list:
real_inputs[0]["text"] = (
replace_today(PROMPT_TEMPLATE)
.replace("{query_str}", fake_inputs)
.replace("{context_str}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
real_inputs = (
replace_today(PROMPT_TEMPLATE)
.replace("{query_str}", real_inputs)
.replace("{context_str}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
elif use_websearch:
search_results = []
with retrieve_proxy() as proxy:
if proxy[0] or proxy[1]:
proxies = {}
if proxy[0]:
proxies["http"] = proxy[0]
if proxy[1]:
proxies["https"] = proxy[1]
else:
proxies = None
with DDGS(proxies=proxies) as ddgs:
ddgs_gen = ddgs.text(fake_inputs, backend="lite")
for r in islice(ddgs_gen, 10):
search_results.append(r)
reference_results = []
for idx, result in enumerate(search_results):
logging.debug(f"搜索结果{idx + 1}:{result}")
domain_name = urllib3.util.parse_url(result["href"]).host
reference_results.append([result["body"], result["href"]])
display_append.append(
# f"{idx+1}. [{domain_name}]({result['href']})\n"
f"<a href=\"{result['href']}\" target=\"_blank\">{idx+1}. {result['title']}</a>"
)
reference_results = add_source_numbers(reference_results)
# display_append = "<ol>\n\n" + "".join(display_append) + "</ol>"
display_append = (
'<div class = "source-a">' + "".join(display_append) + "</div>"
)
if type(real_inputs) == list:
real_inputs[0]["text"] = (
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
.replace("{query}", fake_inputs)
.replace("{web_results}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
real_inputs = (
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
.replace("{query}", fake_inputs)
.replace("{web_results}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
display_append = ""
return limited_context, fake_inputs, display_append, real_inputs, chatbot
def predict(
self,
inputs,
chatbot,
stream=False,
use_websearch=False,
files=None,
reply_language="中文",
should_check_token_count=True,
): # repetition_penalty, top_k
status_text = "开始生成回答……"
if type(inputs) == list:
logging.info(
"用户"
+ f"{self.user_name}"
+ "的输入为:"
+ colorama.Fore.BLUE
+ "("
+ str(len(inputs) - 1)
+ " images) "
+ f"{inputs[0]['text']}"
+ colorama.Style.RESET_ALL
)
else:
logging.info(
"用户"
+ f"{self.user_name}"
+ "的输入为:"
+ colorama.Fore.BLUE
+ f"{inputs}"
+ colorama.Style.RESET_ALL
)
if should_check_token_count:
if type(inputs) == list:
yield chatbot + [(inputs[0]["text"], "")], status_text
else:
yield chatbot + [(inputs, "")], status_text
if reply_language == "跟随问题语言(不稳定)":
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
(
limited_context,
fake_inputs,
display_append,
inputs,
chatbot,
) = self.prepare_inputs(
real_inputs=inputs,
use_websearch=use_websearch,
files=files,
reply_language=reply_language,
chatbot=chatbot,
)
yield chatbot + [(fake_inputs, "")], status_text
if (
self.need_api_key
and self.api_key is None
and not shared.state.multi_api_key
):
status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG
logging.info(status_text)
chatbot.append((fake_inputs, ""))
if len(self.history) == 0:
self.history.append(construct_user(fake_inputs))
self.history.append("")
self.all_token_counts.append(0)
else:
self.history[-2] = construct_user(fake_inputs)
yield chatbot + [(fake_inputs, "")], status_text
return
elif len(fake_inputs.strip()) == 0:
status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG
logging.info(status_text)
yield chatbot + [(fake_inputs, "")], status_text
return
if self.single_turn:
self.history = []
self.all_token_counts = []
if type(inputs) == list:
self.history.append(inputs)
else:
self.history.append(construct_user(inputs))
try:
if stream:
logging.debug("使用流式传输")
iter = self.stream_next_chatbot(
inputs,
chatbot,
fake_input=fake_inputs,
display_append=display_append,
)
for chatbot, status_text in iter:
yield chatbot, status_text
else:
logging.debug("不使用流式传输")
chatbot, status_text = self.next_chatbot_at_once(
inputs,
chatbot,
fake_input=fake_inputs,
display_append=display_append,
)
yield chatbot, status_text
except Exception as e:
traceback.print_exc()
status_text = STANDARD_ERROR_MSG + beautify_err_msg(str(e))
yield chatbot, status_text
if len(self.history) > 1 and self.history[-1]["content"] != fake_inputs:
logging.info(
"回答为:"
+ colorama.Fore.BLUE
+ f"{self.history[-1]['content']}"
+ colorama.Style.RESET_ALL
)
if limited_context:
# self.history = self.history[-4:]
# self.all_token_counts = self.all_token_counts[-2:]
self.history = []
self.all_token_counts = []
max_token = self.token_upper_limit - TOKEN_OFFSET
if sum(self.all_token_counts) > max_token and should_check_token_count:
count = 0
while (
sum(self.all_token_counts)
> self.token_upper_limit * REDUCE_TOKEN_FACTOR
and sum(self.all_token_counts) > 0
):
count += 1
del self.all_token_counts[0]
del self.history[:2]
logging.info(status_text)
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话"
yield chatbot, status_text
self.chatbot = chatbot
self.auto_save(chatbot)
def retry(
self,
chatbot,
stream=False,
use_websearch=False,
files=None,
reply_language="中文",
):
logging.debug("重试中……")
if len(self.history) > 1:
inputs = self.history[-2]["content"]
del self.history[-2:]
if len(self.all_token_counts) > 0:
self.all_token_counts.pop()
elif len(chatbot) > 0:
inputs = chatbot[-1][0]
if '<div class="user-message">' in inputs:
inputs = inputs.split('<div class="user-message">')[1]
inputs = inputs.split("</div>")[0]
elif len(self.history) == 1:
inputs = self.history[-1]["content"]
del self.history[-1]
else:
yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的"
return
iter = self.predict(
inputs,
chatbot,
stream=stream,
use_websearch=use_websearch,
files=files,
reply_language=reply_language,
)
for x in iter:
yield x
logging.debug("重试完毕")
# def reduce_token_size(self, chatbot):
# logging.info("开始减少token数量……")
# chatbot, status_text = self.next_chatbot_at_once(
# summarize_prompt,
# chatbot
# )
# max_token_count = self.token_upper_limit * REDUCE_TOKEN_FACTOR
# num_chat = find_n(self.all_token_counts, max_token_count)
# logging.info(f"previous_token_count: {self.all_token_counts}, keeping {num_chat} chats")
# chatbot = chatbot[:-1]
# self.history = self.history[-2*num_chat:] if num_chat > 0 else []
# self.all_token_counts = self.all_token_counts[-num_chat:] if num_chat > 0 else []
# msg = f"保留了最近{num_chat}轮对话"
# logging.info(msg)
# logging.info("减少token数量完毕")
# return chatbot, msg + "," + self.token_message(self.all_token_counts if len(self.all_token_counts) > 0 else [0])
def interrupt(self):
self.interrupted = True
def recover(self):
self.interrupted = False
def set_token_upper_limit(self, new_upper_limit):
self.token_upper_limit = new_upper_limit
self.auto_save()
def set_temperature(self, new_temperature):
self.temperature = new_temperature
self.auto_save()
def set_top_p(self, new_top_p):
self.top_p = new_top_p
self.auto_save()
def set_n_choices(self, new_n_choices):
self.n_choices = new_n_choices
self.auto_save()
def set_stop_sequence(self, new_stop_sequence: str):
new_stop_sequence = new_stop_sequence.split(",")
self.stop_sequence = new_stop_sequence
self.auto_save()
def set_max_tokens(self, new_max_tokens):
self.max_generation_token = new_max_tokens
self.auto_save()
def set_presence_penalty(self, new_presence_penalty):
self.presence_penalty = new_presence_penalty
self.auto_save()
def set_frequency_penalty(self, new_frequency_penalty):
self.frequency_penalty = new_frequency_penalty
self.auto_save()
def set_logit_bias(self, logit_bias):
self.logit_bias = logit_bias
self.auto_save()
def encoded_logit_bias(self):
if self.logit_bias is None:
return {}
logit_bias = self.logit_bias.split()
bias_map = {}
encoding = tiktoken.get_encoding("cl100k_base")
for line in logit_bias:
word, bias_amount = line.split(":")
if word:
for token in encoding.encode(word):
bias_map[token] = float(bias_amount)
return bias_map
def set_user_identifier(self, new_user_identifier):
self.user_identifier = new_user_identifier
self.auto_save()
def set_system_prompt(self, new_system_prompt):
self.system_prompt = new_system_prompt
self.auto_save()
def set_key(self, new_access_key):
if "*" not in new_access_key:
self.api_key = new_access_key.strip()
msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key)
logging.info(msg)
return self.api_key, msg
else:
return gr.update(), gr.update()
def set_single_turn(self, new_single_turn):
self.single_turn = new_single_turn
self.auto_save()
def reset(self, remain_system_prompt=False):
self.history = []
self.all_token_counts = []
self.interrupted = False
self.history_file_path = new_auto_history_filename(self.user_name)
history_name = self.history_file_path[:-5]
choices = get_history_names(self.user_name)
if history_name not in choices:
choices.insert(0, history_name)
system_prompt = self.system_prompt if remain_system_prompt else ""
self.single_turn = self.default_single_turn
self.temperature = self.default_temperature
self.top_p = self.default_top_p
self.n_choices = self.default_n_choices
self.stop_sequence = self.default_stop_sequence
self.max_generation_token = self.default_max_generation_token
self.presence_penalty = self.default_presence_penalty
self.frequency_penalty = self.default_frequency_penalty
self.logit_bias = self.default_logit_bias
self.user_identifier = self.default_user_identifier
return (
[],
self.token_message([0]),
gr.Radio.update(choices=choices, value=history_name),
system_prompt,
self.single_turn,
self.temperature,
self.top_p,
self.n_choices,
self.stop_sequence,
self.token_upper_limit,
self.max_generation_token,
self.presence_penalty,
self.frequency_penalty,
self.logit_bias,
self.user_identifier,
)
def delete_first_conversation(self):
if self.history:
del self.history[:2]
del self.all_token_counts[0]
return self.token_message()
def delete_last_conversation(self, chatbot):
if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]:
msg = "由于包含报错信息,只删除chatbot记录"
chatbot = chatbot[:-1]
return chatbot, self.history
if len(self.history) > 0:
self.history = self.history[:-2]
if len(chatbot) > 0:
msg = "删除了一组chatbot对话"
chatbot = chatbot[:-1]
if len(self.all_token_counts) > 0:
msg = "删除了一组对话的token计数记录"
self.all_token_counts.pop()
msg = "删除了一组对话"
self.chatbot = chatbot
self.auto_save(chatbot)
return chatbot, msg
def token_message(self, token_lst=None):
if token_lst is None:
token_lst = self.all_token_counts
token_sum = 0
for i in range(len(token_lst)):
token_sum += sum(token_lst[: i + 1])
return (
i18n("Token 计数: ")
+ f"{sum(token_lst)}"
+ i18n(",本次对话累计消耗了 ")
+ f"{token_sum} tokens"
)
def rename_chat_history(self, filename, chatbot):
if filename == "":
return gr.update()
if not filename.endswith(".json"):
filename += ".json"
self.delete_chat_history(self.history_file_path)
# 命名重复检测
repeat_file_index = 2
full_path = os.path.join(HISTORY_DIR, self.user_name, filename)
while os.path.exists(full_path):
full_path = os.path.join(
HISTORY_DIR, self.user_name, f"{repeat_file_index}_{filename}"
)
repeat_file_index += 1
filename = os.path.basename(full_path)
self.history_file_path = filename
save_file(filename, self, chatbot)
return init_history_list(self.user_name)
def auto_name_chat_history(
self, name_chat_method, user_question, chatbot, single_turn_checkbox
):
if len(self.history) == 2 and not single_turn_checkbox:
user_question = self.history[0]["content"]
if type(user_question) == list:
user_question = user_question[0]["text"]
filename = replace_special_symbols(user_question)[:16] + ".json"
return self.rename_chat_history(filename, chatbot)
else:
return gr.update()
def auto_save(self, chatbot=None):
if chatbot is not None:
save_file(self.history_file_path, self, chatbot)
def export_markdown(self, filename, chatbot):
if filename == "":
return
if not filename.endswith(".md"):
filename += ".md"
save_file(filename, self, chatbot)
def load_chat_history(self, new_history_file_path=None):
logging.debug(f"{self.user_name} 加载对话历史中……")
if new_history_file_path is not None:
if type(new_history_file_path) != str:
# copy file from new_history_file_path.name to os.path.join(HISTORY_DIR, self.user_name)
new_history_file_path = new_history_file_path.name
shutil.copyfile(
new_history_file_path,
os.path.join(
HISTORY_DIR,
self.user_name,
os.path.basename(new_history_file_path),
),
)
self.history_file_path = os.path.basename(new_history_file_path)
else:
self.history_file_path = new_history_file_path
try:
if self.history_file_path == os.path.basename(self.history_file_path):
history_file_path = os.path.join(
HISTORY_DIR, self.user_name, self.history_file_path
)
else:
history_file_path = self.history_file_path
if not self.history_file_path.endswith(".json"):