|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +import torchvision |
| 4 | +import torchvision.transforms as transforms |
| 5 | + |
| 6 | + |
| 7 | +# Device configuration |
| 8 | +device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
| 9 | + |
| 10 | +# Hyper parameters |
| 11 | +num_epochs = 5 |
| 12 | +num_classes = 10 |
| 13 | +batch_size = 100 |
| 14 | +learning_rate = 0.001 |
| 15 | + |
| 16 | +# MNIST dataset |
| 17 | +train_dataset = torchvision.datasets.MNIST(root='../../data/', |
| 18 | + train=True, |
| 19 | + transform=transforms.ToTensor(), |
| 20 | + download=True) |
| 21 | + |
| 22 | +test_dataset = torchvision.datasets.MNIST(root='../../data/', |
| 23 | + train=False, |
| 24 | + transform=transforms.ToTensor()) |
| 25 | + |
| 26 | +# Data loader |
| 27 | +train_loader = torch.utils.data.DataLoader(dataset=train_dataset, |
| 28 | + batch_size=batch_size, |
| 29 | + shuffle=True) |
| 30 | + |
| 31 | +test_loader = torch.utils.data.DataLoader(dataset=test_dataset, |
| 32 | + batch_size=batch_size, |
| 33 | + shuffle=False) |
| 34 | + |
| 35 | +# Convolutional neural network (two convolutional layers) |
| 36 | +class ConvNet(nn.Module): |
| 37 | + def __init__(self, num_classes=10): |
| 38 | + super(ConvNet, self).__init__() |
| 39 | + self.layer1 = nn.Sequential( |
| 40 | + nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), |
| 41 | + nn.BatchNorm2d(16), |
| 42 | + nn.ReLU(), |
| 43 | + nn.MaxPool2d(kernel_size=2, stride=2)) |
| 44 | + self.layer2 = nn.Sequential( |
| 45 | + nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2), |
| 46 | + nn.BatchNorm2d(32), |
| 47 | + nn.ReLU(), |
| 48 | + nn.MaxPool2d(kernel_size=2, stride=2)) |
| 49 | + self.fc = nn.Linear(7*7*32, num_classes) |
| 50 | + |
| 51 | + def forward(self, x): |
| 52 | + out = self.layer1(x) |
| 53 | + out = self.layer2(out) |
| 54 | + out = out.reshape(out.size(0), -1) |
| 55 | + out = self.fc(out) |
| 56 | + return out |
| 57 | + |
| 58 | +model = ConvNet(num_classes).to(device) |
| 59 | + |
| 60 | +# Loss and optimizer |
| 61 | +criterion = nn.CrossEntropyLoss() |
| 62 | +optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) |
| 63 | + |
| 64 | +# Train the model |
| 65 | +total_step = len(train_loader) |
| 66 | +for epoch in range(num_epochs): |
| 67 | + for i, (images, labels) in enumerate(train_loader): |
| 68 | + images = images.to(device) |
| 69 | + labels = labels.to(device) |
| 70 | + |
| 71 | + # Forward pass |
| 72 | + outputs = model(images) |
| 73 | + loss = criterion(outputs, labels) |
| 74 | + |
| 75 | + # Backward and optimize |
| 76 | + optimizer.zero_grad() |
| 77 | + loss.backward() |
| 78 | + optimizer.step() |
| 79 | + |
| 80 | + if (i+1) % 100 == 0: |
| 81 | + print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' |
| 82 | + .format(epoch+1, num_epochs, i+1, total_step, loss.item())) |
| 83 | + |
| 84 | +# Test the model |
| 85 | +model.eval() # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance) |
| 86 | +with torch.no_grad(): |
| 87 | + correct = 0 |
| 88 | + total = 0 |
| 89 | + for images, labels in test_loader: |
| 90 | + images = images.to(device) |
| 91 | + labels = labels.to(device) |
| 92 | + outputs = model(images) |
| 93 | + _, predicted = torch.max(outputs.data, 1) |
| 94 | + total += labels.size(0) |
| 95 | + correct += (predicted == labels).sum().item() |
| 96 | + |
| 97 | + print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) |
| 98 | + |
| 99 | +# Save the model checkpoint |
| 100 | +torch.save(model.state_dict(), 'model.ckpt') |
0 commit comments