-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_test.py
269 lines (226 loc) · 12.4 KB
/
run_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import re
import json
import argparse
from datasets import DatasetDict
from project.dataset.process import DataProcessUtil
from project.metric.computer import MetricComputer
from project.util.path_util import PathUtil
from project.util.logs_util import LogsUtil
logger = LogsUtil.get_logs_util()
pattern_1 = re.compile(r"([A-Za-z]+\.[A-Za-z0-9]+\()")
pattern_2 = re.compile(r"[ |.]([a-z]+?[A-Za-z0-9]+\()")
pattern_3 = re.compile(r"[ |.]([A-Z]+?[A-Za-z0-9]*)")
def _split_2_package_class(imports_info: str):
packages = set()
classes = set()
for import_info in imports_info.split(";"):
if not import_info.strip():
continue
split_imports = [_ for _ in import_info.strip().split(" ")[-1].split(".") if _]
if len(split_imports) > 0:
i = len(split_imports) - 1
while i > 0:
if split_imports[i][0].isupper():
classes.add(split_imports[i])
break
i -= 1
package_str = ".".join(split_imports[:i]) if i > 0 else ".".join(split_imports)
if len(package_str) > 0:
packages.add(package_str)
return packages, classes
def _extract_apis(code):
class_dot_method = set([_ for _ in re.findall(pattern_1, code)])
method_apis = set([_[_.index(".") + 1 : -1] for _ in class_dot_method])
method_apis |= set([_[:-1] for _ in re.findall(pattern_2, code)])
method_apis -= {"function"}
class_apis = set([_ for _ in [_[: _.index(".")] for _ in class_dot_method] if len(_) > 0 and _[0].isupper()])
# !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
code = " " + code.translate(str.maketrans(dict.fromkeys("!\"#$%&'()*+,-/:;<=>?@[\]^_`{|}~", " ")))
class_apis |= set([_ for _ in re.findall(pattern_3, code) if not _.isupper()])
return class_apis, method_apis
def _cal_ac(dataset, decoded_labels_typ, decoded_preds_tye):
full_ac_cnt = 0
half_ac_cnt = 0
precisions = ([], [], [])
recalls = ([], [], [])
data_cnt = len(dataset)
for row in dataset:
# import
imports_labels = [_.strip() for _ in row[decoded_labels_typ].split(";") if _.strip()]
imports_preds = [_.strip() for _ in row[decoded_preds_tye].split(";") if _.strip()]
# package & class
packages_classes_labels = _split_2_package_class(row[decoded_labels_typ])
packages_classes_preds = _split_2_package_class(row[decoded_preds_tye])
logger.info("p=" + str(imports_preds))
logger.info("r=" + str(imports_labels))
# import
true_cnt = len(set(imports_labels) & set(imports_preds))
half_ac_cnt += 1 if true_cnt > 0 else 0
full_ac_cnt += 1 if true_cnt == len(imports_labels) else 0
precisions[0].append(true_cnt / len(imports_preds) if len(imports_preds) > 0 else 1)
recalls[0].append(true_cnt / len(imports_labels))
# package
true_cnt = len(set(packages_classes_labels[0]) & set(packages_classes_preds[0]))
precisions[1].append(true_cnt / len(packages_classes_preds[0]) if len(packages_classes_preds[0]) > 0 else 1)
recalls[1].append(true_cnt / len(packages_classes_labels[0]) if len(packages_classes_labels[0]) > 0 else 1)
# class
true_cnt = len(set(packages_classes_labels[1]) & set(packages_classes_preds[1]))
precisions[2].append(true_cnt / len(packages_classes_preds[1]) if len(packages_classes_preds[1]) > 0 else 1)
recalls[2].append(true_cnt / len(packages_classes_labels[1]) if len(packages_classes_labels[1]) > 0 else 1)
full_ac = float(full_ac_cnt / data_cnt)
half_ac = float(half_ac_cnt / data_cnt)
impor_precision_recall = float(sum(precisions[0])) / len(precisions[0]), float(sum(recalls[0]) / len(recalls[0]))
packg_precision_recall = float(sum(precisions[1])) / len(precisions[1]), float(sum(recalls[1]) / len(recalls[1]))
class_precision_recall = float(sum(precisions[2])) / len(precisions[2]), float(sum(recalls[2]) / len(recalls[2]))
logger.info("full ac: {:.5f}".format(full_ac))
logger.info("half ac: {:.5f}".format(half_ac))
logger.info("impor@precision: {:.5f}\t recall: {:.5f}".format(impor_precision_recall[0], impor_precision_recall[1]))
logger.info("packg@precision: {:.5f}\t recall: {:.5f}".format(packg_precision_recall[0], packg_precision_recall[1]))
logger.info("class@precision: {:.5f}\t recall: {:.5f}".format(class_precision_recall[0], class_precision_recall[1]))
print(full_ac, half_ac, impor_precision_recall[0], impor_precision_recall[1])
print(packg_precision_recall[0], packg_precision_recall[1])
print(class_precision_recall[0], class_precision_recall[1])
def cal_ac(version: str, decoded_labels_typ: str = "decoded_labels", decoded_preds_typ: str = "decoded_preds"):
dataset = DatasetDict.load_from_disk(PathUtil.datasets(f"{version}/test-github-code-java-libs"))
# 过滤测试代码
# dataset = dataset.filter(
# lambda x: all([_ not in x["imports_info"].lower() for _ in ["junit", "assert", "test"]])
# and all([_ not in x["method"].lower() for _ in ["assert", "test"]])
# )
# _cal_ac(dataset["validation"])
_cal_ac(dataset["test"], decoded_labels_typ, decoded_preds_typ)
print(dataset)
def _cal_metrics(dataset, decoded_labels_typ, decoded_preds_typ):
MetricComputer.compute_decoded_metrics((dataset[decoded_preds_typ], dataset[decoded_labels_typ]))
def cal_metrics(version: str, decoded_labels_typ: str = "decoded_labels", decoded_preds_typ: str = "decoded_preds"):
dataset = DatasetDict.load_from_disk(PathUtil.datasets(f"{version}/test-github-code-java-libs"))
# 过滤测试代码
# dataset = dataset.filter(
# lambda x: all([_ not in x["imports_info"].lower() for _ in ["junit", "assert", "test"]])
# and all([_ not in x["method"].lower() for _ in ["assert", "test"]])
# )
# dataset = dataset.filter(lambda x: x["libraries"] != ["jdk"] and x["libraries"] != ["sdk"])
print(dataset)
_cal_metrics(dataset["test"], decoded_labels_typ, decoded_preds_typ)
def _cal_precision_recall(preds, labels, full_ac_cnt, half_ac_cnt, precisions, recalls):
true_cnt = len(set(labels) & set(preds))
full_ac_cnt += 1 if true_cnt == len(labels) else 0
half_ac_cnt += 1 if true_cnt > 0 else 0
precisions.append(true_cnt / len(preds) if len(preds) > 0 else 1)
recalls.append(true_cnt / len(labels) if len(labels) > 0 else 1)
return full_ac_cnt, half_ac_cnt
def _cal_mismatch(dataset, decoded_typ):
# 0: class, 1: method, 2: class_by_main_lib
precisions = ([], [], [])
recalls = ([], [], [])
full_ac_cnt = [0, 0, 0]
half_ac_cnt = [0, 0, 0]
data_cnt = len(dataset)
for row in dataset:
# class & method
class_method_p = _extract_apis(row[decoded_typ])
class_method_r = _extract_apis(row["decoded_labels"])
full_ac_cnt[0], half_ac_cnt[0] = _cal_precision_recall(
class_method_p[0], class_method_r[0], full_ac_cnt[0], half_ac_cnt[0], precisions[0], recalls[0]
)
full_ac_cnt[1], half_ac_cnt[1] = _cal_precision_recall(
class_method_p[1], class_method_r[1], full_ac_cnt[1], half_ac_cnt[1], precisions[1], recalls[1]
)
libs = []
for lib in row["libraries"]:
if lib == 'jdk':
libs.append("java")
elif lib == "sdk":
libs.append("android")
else:
libs.append(lib)
bad_classes = _split_2_package_class(
";".join([import_ for import_ in row["imports"] if all([_ not in import_ for _ in libs])])
)[1]
main_lib_related_class = _split_2_package_class(
";".join([import_ for import_ in row["imports"] if any([_ in import_ for _ in libs])])
)[1]
generated_class = _extract_apis(row[decoded_typ])[0] - set(bad_classes)
full_ac_cnt[2], half_ac_cnt[2] = _cal_precision_recall(
generated_class, main_lib_related_class, full_ac_cnt[2], half_ac_cnt[2], precisions[2], recalls[2]
)
full_ac = float(full_ac_cnt[0] / data_cnt), float(full_ac_cnt[1] / data_cnt), float(full_ac_cnt[2] / data_cnt)
half_ac = float(half_ac_cnt[0] / data_cnt), float(half_ac_cnt[1] / data_cnt), float(half_ac_cnt[2] / data_cnt)
class_pandr = float(sum(precisions[0])) / len(precisions[0]), float(sum(recalls[0]) / len(recalls[0]))
class_f1 = 2 * (class_pandr[0] * class_pandr[1]) / (class_pandr[0] + class_pandr[1])
metho_pandr = float(sum(precisions[1])) / len(precisions[1]), float(sum(recalls[1]) / len(recalls[1]))
metho_f1 = 2 * (metho_pandr[0] * metho_pandr[1]) / (metho_pandr[0] + metho_pandr[1])
by_main_lib_pandr = float(sum(precisions[2])) / len(precisions[2]), float(sum(recalls[2]) / len(recalls[2]))
by_main_lib_f1 = 2 * (by_main_lib_pandr[0] * by_main_lib_pandr[1]) / (by_main_lib_pandr[0] + by_main_lib_pandr[1])
logger.info("class@full ac: {:.5f}".format(full_ac[0]))
logger.info("class@half ac: {:.5f}".format(half_ac[0]))
logger.info(
"class@precision: {:.5f}\t recall: {:.5f}\t f1: {:.5f}".format(class_pandr[0], class_pandr[1], class_f1)
)
logger.info("metho@full ac: {:.5f}".format(full_ac[1]))
logger.info("metho@half ac: {:.5f}".format(half_ac[1]))
logger.info(
"metho@precision: {:.5f}\t recall: {:.5f}\t f1: {:.5f}".format(metho_pandr[0], metho_pandr[1], metho_f1)
)
logger.info("classFilter@full ac: {:.5f}".format(full_ac[2]))
logger.info("classFilter@half ac: {:.5f}".format(half_ac[2]))
logger.info(
"classFilter@precision: {:.5f}\t recall: {:.5f}\t f1: {:.5f}".format(
by_main_lib_pandr[0], by_main_lib_pandr[1], by_main_lib_f1
)
)
print(full_ac[0], half_ac[0], class_pandr[0], class_pandr[1], class_f1)
print(full_ac[1], half_ac[1], metho_pandr[0], metho_pandr[1], metho_f1)
print(full_ac[2], half_ac[2], by_main_lib_pandr[0], by_main_lib_pandr[1], by_main_lib_f1)
def cal_mismatch(version: str, decoded_typ: str = "decoded_preds"):
dataset = DatasetDict.load_from_disk(PathUtil.datasets(f"{version}/test-github-code-java-libs"))
# 过滤测试代码
# dataset = dataset.filter(
# lambda x: all([_ not in x["imports_info"].lower() for _ in ["junit", "assert", "test"]])
# and all([_ not in x["method"].lower() for _ in ["assert", "test"]])
# )
# _cal_metrics(dataset["validation"])
_cal_mismatch(dataset["test"], decoded_typ)
print(dataset)
def eval_test(version: str, datasets_version: str, gpu):
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
if not datasets_version:
datasets_version = version
dataset = DatasetDict.load_from_disk(PathUtil.datasets(f"{datasets_version}/github-code-java-libs"))
test_validation_dataset = DatasetDict()
test_validation_dataset["test"] = dataset["test"]
test_validation_dataset["validation"] = dataset["validation"]
test_validation_dataset = test_validation_dataset.map(
lambda x: DataProcessUtil.postprocess_function_with_generate(x, version), batched=True, batch_size=32
)
test_validation_dataset.save_to_disk(PathUtil.datasets(f"{datasets_version}/test-github-code-java-libs"))
test_dataset = test_validation_dataset["test"]
MetricComputer.compute_decoded_metrics((test_dataset["decoded_preds"], test_dataset["decoded_labels"]))
def add_args(parser):
parser.add_argument("--version", type=str, required=True, help="The version of model.")
parser.add_argument("--gpu", default=0)
parser.add_argument(
"--datasets_version", default=None, type=str, help="The version of datasets. Same as version if None."
)
args = parser.parse_args()
return args
if __name__ == "__main__":
version_ = "l1"
# code
cal_metrics(version_)
# imports
cal_metrics(version_, "imports_info", "retrieved_imports_info")
cal_metrics(version_, "imports_info", "generated_imports_info")
cal_metrics(version_, "imports_info", "cleaner_generated_imports_info")
cal_metrics(version_, "imports_info", "union_gen_rei_imports_info")
cal_metrics(version_, "imports_info", "intersection_gen_rei_imports_info")
# imports
cal_ac(version_)
cal_ac(version_, "imports_info", "retrieved_imports_info")
cal_ac(version_, "imports_info", "generated_imports_info")
cal_ac(version_, "imports_info", "cleaner_generated_imports_info")
cal_ac(version_, "imports_info", "union_gen_rei_imports_info")
cal_ac(version_, "imports_info", "intersection_gen_rei_imports_info")
# code
cal_mismatch(version_)