-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathCurveInterpolation
143 lines (108 loc) · 5.6 KB
/
CurveInterpolation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
= High Accuracy Table Lookup Using Curve Interpolation =
==== Abstract
This algorithm basically trades speed for table size by assuming that the
line joining points in a lookup table is really a curve. The value in question
rests on the curve between the two middle points of a four point segment. The
curve is assumed to be a third degree polynomial that passes through all four
points.
Intended for use on small processors, this code uses only integer arithmetic.
I originally wrote this code to calculate various transcendental functions to
16-bit precision. There are more efficient ways to approximate such
functions, but the general purpose method presented here lends itself to
arbitrary functions too.
This implemention is in ANS Forth using the CORE and CORE EXT wordsets.
==== Theory
Given points y(0), y(1), y(2) and y(3),
there is a point f(y) between y(1) and y(2) where the
region of interest is 0 <= y < 1.
f(x) = w[0] + w[1]x + w[2]x^2 + w[3]x^3
Here, I use two different ways of constraining the equation. One method
forces the curve to pass through all four points:
For four equally spaced points (n = -1,0,1,2), f(n) gives four equations:
f(-1) = y[0] = w[0] - w[1] + w[2] - w[3]
f(0) = y[1] = w[0]
f(1) = y[2] = w[0] + w[1] + w[2] + w[3]
f(2) = y[3] = w[0] + 2w[1] + 4w[2] + 8w[3]
Simultaneously solving these equations yields the following coefficients
upon which the algorithm is based:
w[0] = y[1]
w[1] = (-2y[0] - 3y[1] + 6y[2] - y[3]) / 6
w[2] = ( 3y[0] - 6y[1] + 3y[2] ) / 6
w[3] = ( -y[0] + 3y[1] - 3y[2] + y[3]) / 6
The other method forces the curve to pass through the two middle points and
the slope of the curve at either middle point to be fixed as the slope between
its neighbors.
f(0) = y[1]
f(1) = y[2]
f'(0) = (y[2]-y[0])/2
f'(1) = (y[3]-y[1])/2
By differentiating f(x) a couple of times and applying a little algebra,
we get the following coefficients:
w[0] = y[1]
w[1] = ( -y[0] + y[2] ) / 2
w[2] = ( 2y[0] - 5y[1] + 4y[2] - y[3] ) / 2
w[3] = ( -y[0] + 3y[1] - 3y[2] + y[3] ) / 2
This method forces the slopes of each table segment to match up, giving a
smoother result. Use this one for calibration tables and motion profiles
where you want more smoothness, and the other for math functions where
you want better accuracy. Note that one method doesn't use division.
The word CURVE4 does the approximation using four data points at an address.
CURVE does indexing and scaling so as to be useful in using a lookup table.
The algorithm takes some shortcuts to keep the math simple, so a wildly
varying lookup table could cause an overflow. In typical applications, you
won't come close to this situation. But, it always pays to test.
Also, the SMOOTHER option is less likely to overflow.
The example at the end represents the first quadrant of a sine function using
19 data points. This gives better than 16-bit precision.
To find the worst case error, let g(x) be the fourth derivative of f(x). Find
the value of x that gives the highest absolute value of g(x). Feed CURVE4 a
frac value of maxint/2 and an address pointing to the worst case position.
Then, compare the result to f(x).
----
1 constant smoother? ( Smoother or more accurate? See above explanation. )
: d3* 2dup d2* d+ ; \ quick multiply by constant
: d4* d2* d2* ;
: d5* 2dup d2* d2* d+ ;
: d6* d2* d3* ;
variable wptr \ points to the input data
: yn ( -- d ) wptr @ @ s>d 1 cells wptr +! ; \ get next point
: y[ ( a -- 0.0 ) wptr ! 0.0 ; \ begin coefficient calculation
: ]y ( d -- n ) d>s ; \ end coefficient calculation
: poly ( frac n1 n2 -- n3 ) \ n3 = n1 * frac + n2
>r m* d2* [ -1 1 rshift invert ] literal 0 d+ nip \ round
r> + ;
smoother? [if]
: w1 ( a -- n ) y[ yn d- yn 2drop yn d+ ]y ; \ -y0+y2
: w2 ( a -- n ) y[ yn d2* d+ yn d5* d- yn d4* d+ yn d- ]y ; \ 2y0-5y1+4y2-y3
: w3 ( a -- n ) y[ yn d- yn d3* d+ yn d3* d- yn d+ ]y ; \ -y0+3y1-3y2+y3
: curve4 ( frac a -- n ) \ frac = 0..maxint
\ perform curve interpolation on 4-cell table at a
>r dup dup r@ w3 \ w3
r@ w2 poly \ w3*f + w2
r@ w1 poly 2/ \ (w3*n*n + w2*n + w1) / 2
r> cell+ @ poly ; \ *n + y1
[else]
: w1 ( a -- n ) y[ yn d2* d- yn d3* d- yn d6* d+ yn d- ]y ;
: w2 ( a -- n ) y[ yn d3* d+ yn d6* d- yn d3* d+ ]y ;
: w3 ( a -- n ) y[ yn d- yn d3* d+ yn d3* d- yn d+ ]y ;
: curve4 ( frac a -- n ) \ frac = 0..maxint
\ perform curve interpolation on 4-cell table at a
>r dup dup r@ w3 \ w3
r@ w2 poly \ w3*f + w2
r@ w1 poly 6 / \ (w3*n*n + w2*n + w1) / 6
r> cell+ @ poly ; \ *n + y1
[then]
: tcurve ( n1 addr -- n2 )
\ perform curve interpolation on table at addr, n1 = 0..2^cellsize-1
dup cell+ >r @ ( n1 tablesize | addr )
um* >r 1 rshift r> ( frac offset | addr )
cells r> + curve4 ;
: CURVE ( n1 span addr -- n2 )
\ perform curve interpolation on table at addr, n1 = 0..span-1
>r >r 0 swap r> um/mod nip r> tcurve ;
create ExampleTable \ Sine table (1st quadrant)
16 , ( 16 points plus 3 endpoints )
-3212 , 0 , 3212 , 6393 , 9512 , 12540 , 15447 , 18205 ,
20788 , 23170 , 25330 , 27246 , 28899 , 30274 , 31357 , 32138 ,
32610 , 32767 , 32610 , \ clipped to maxint for 16-bit 4ths
.( 32768*sin[10degrees] is ) 10 90 ExampleTable CURVE .