forked from pythonlessons/CAPTCHA-solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCAPTCHA_object_detection.py
130 lines (109 loc) · 5.7 KB
/
CAPTCHA_object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Welcome to CAPTCHA break tutorial !
# Imports
import cv2
import numpy as np
import os
import sys
# run on CPU, to run on GPU comment this line or write '0'
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import tensorflow as tf
from distutils.version import StrictVersion
from collections import defaultdict
# title of our window
title = "CAPTCHA"
# Env setup
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# Model preparation
PATH_TO_FROZEN_GRAPH = 'CAPTCHA_frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = 'CAPTCHA_labelmap.pbtxt'
NUM_CLASSES = 37
# Load a (frozen) Tensorflow model into memory.
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Detection
def Captcha_detection(image, average_distance_error=3):
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Open image
image_np = cv2.imread(image)
# resize image if needed
image_np = cv2.resize(image_np, (0,0), fx=3, fy=3)
# To get real color we do this:
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Visualization of the results of a detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=2)
# Show image with detection
#cv2.imshow(title, cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB))
# Save image with detection
cv2.imwrite("Predicted_captcha.jpg", cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB))
# Bellow we do filtering stuff
captcha_array = []
# loop our all detection boxes
for i,b in enumerate(boxes[0]):
for Symbol in range(37):
if classes[0][i] == Symbol: # check if detected class equal to our symbols
if scores[0][i] >= 0.65: # do something only if detected score more han 0.65
# x-left # x-right
mid_x = (boxes[0][i][1]+boxes[0][i][3])/2 # find x coordinates center of letter
# to captcha_array array save detected Symbol, middle X coordinates and detection percentage
captcha_array.append([category_index[Symbol].get('name'), mid_x, scores[0][i]])
# rearange array acording to X coordinates datected
for number in range(20):
for captcha_number in range(len(captcha_array)-1):
if captcha_array[captcha_number][1] > captcha_array[captcha_number+1][1]:
temporary_captcha = captcha_array[captcha_number]
captcha_array[captcha_number] = captcha_array[captcha_number+1]
captcha_array[captcha_number+1] = temporary_captcha
# Find average distance between detected symbols
average = 0
captcha_len = len(captcha_array)-1
while captcha_len > 0:
average += captcha_array[captcha_len][1]- captcha_array[captcha_len-1][1]
captcha_len -= 1
# Increase average distance error
average = average/(len(captcha_array)+average_distance_error)
captcha_array_filtered = list(captcha_array)
captcha_len = len(captcha_array)-1
while captcha_len > 0:
# if average distance is larger than error distance
if captcha_array[captcha_len][1]- captcha_array[captcha_len-1][1] < average:
# check which symbol has higher detection percentage
if captcha_array[captcha_len][2] > captcha_array[captcha_len-1][2]:
del captcha_array_filtered[captcha_len-1]
else:
del captcha_array_filtered[captcha_len]
captcha_len -= 1
# Get final string from filtered CAPTCHA array
captcha_string = ""
for captcha_letter in range(len(captcha_array_filtered)):
captcha_string += captcha_array_filtered[captcha_letter][0]
return captcha_string