Skip to content

Commit 705b77a

Browse files
author
Nick van der Burgt
committed
update BL to store predictions in influx for auditing
1 parent 0593b85 commit 705b77a

File tree

4 files changed

+16
-16
lines changed

4 files changed

+16
-16
lines changed

src/application/generate_events.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -140,7 +140,7 @@ async def get_capacity_limitation_event(
140140
Args:
141141
actions (PredictionActionsBase): The actions to use.
142142
from_date (datetime): The start time (inclusive) from which to fetch OpenADR events.
143-
to_date (datetime): The end time (exclusive) from which to fetch OpenADR events.
143+
to_date (datetime): The end time (inclusive) from which to fetch OpenADR events.
144144
145145
Returns:
146146
Event | None: The OpenADR3 capacity limitation event. None if no data to base the event on could be retrieved.

src/config.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,9 @@
2828
STANDARD_PROFILES_BUCKET_NAME = config(
2929
"STANDARD_PROFILES_BUCKET_NAME", default="ditm_standard_profiles"
3030
)
31-
DALIDATA_BUCKET_NAME = config("DALIDATA_BUCKET_NAME", default="dalidata")
31+
DALIDATA_BUCKET_NAME = config(
32+
"DALIDATA_BUCKET_NAME", default="ditm-dali-data-processed"
33+
)
3234

3335
# External services URLs
3436
WEATHER_FORECAST_API_URL = config("WEATHER_FORECAST_API_URL")

src/infrastructure/azureml/feature_generation.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -144,28 +144,28 @@ async def _get_lag_features_for_dates(
144144
)
145145

146146
predict_datetimes_df["lag_1_year"] = dalidata_df.reindex(lag_1_year_dt)[
147-
"value"
147+
"WAARDE"
148148
].values
149149
predict_datetimes_df["lag_1_days"] = dalidata_df.reindex(lag_1_day_dt)[
150-
"value"
150+
"WAARDE"
151151
].values
152152
predict_datetimes_df["lag_2_days"] = dalidata_df.reindex(lag_2_day_dt)[
153-
"value"
153+
"WAARDE"
154154
].values
155155
predict_datetimes_df["lag_3_days"] = dalidata_df.reindex(lag_3_day_dt)[
156-
"value"
156+
"WAARDE"
157157
].values
158158
predict_datetimes_df["lag_4_days"] = dalidata_df.reindex(lag_4_day_dt)[
159-
"value"
159+
"WAARDE"
160160
].values
161161
predict_datetimes_df["lag_5_days"] = dalidata_df.reindex(lag_5_day_dt)[
162-
"value"
162+
"WAARDE"
163163
].values
164164
predict_datetimes_df["lag_6_days"] = dalidata_df.reindex(lag_6_day_dt)[
165-
"value"
165+
"WAARDE"
166166
].values
167167
predict_datetimes_df["lag_7_days"] = dalidata_df.reindex(lag_7_day_dt)[
168-
"value"
168+
"WAARDE"
169169
].values
170170

171171
return predict_datetimes_df

src/infrastructure/influxdb/dalidata/query_dali_data.py

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -11,24 +11,22 @@ async def retrieve_dali_data_between(
1111
start_date_inclusive: datetime,
1212
end_date_inclusive: datetime,
1313
) -> pd.DataFrame:
14-
"""Retrieve standard profiles from InfluxDB between the given dates.
14+
"""Retrieve dalidata from InfluxDB between the given dates.
1515
1616
Args:
1717
start_date_inclusive (datetime): The start date (inclusive)
1818
end_date_inclusive (datetime): The end date (inclusive)
1919
2020
Returns:
21-
pd.DataFrame: The dataframe containing standard profiles for the date range.
21+
pd.DataFrame: The dataframe containing dalidata for the date range.
2222
"""
2323
start_date_str = start_date_inclusive.strftime(format="%Y-%m-%dT%H:%M:%SZ")
2424
end_date_str = end_date_inclusive.strftime(format="%Y-%m-%dT%H:%M:%SZ")
2525

2626
query = f"""from(bucket: "{DALIDATA_BUCKET_NAME}")
2727
|> range(start: {start_date_str}, stop: {end_date_str})
28-
|> filter(fn: (r) => r["_measurement"] == "kinesis_data")
29-
|> filter(fn: (r) => r["_field"] == "value")
30-
|> filter(fn: (r) => r["boxid"] == "CVD.091030-1")
31-
|> filter(fn: (r) => r["description"] == "Trafometing vermogen som 3 fases - gem. 15 min." or r["description"] == "Trafometing_vermogen_som_3_fases_-_gem._15_min.")
28+
|> filter(fn: (r) => r["_measurement"] == "WAARDE")
29+
|> filter(fn: (r) => r["_field"] == "WAARDE")
3230
|> group(columns: [])
3331
|> sort(columns: ["_time"])
3432
|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")

0 commit comments

Comments
 (0)