-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_parser.py
133 lines (116 loc) · 3.66 KB
/
evaluate_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from cky import Pcfg, CkyParser, get_tree
import sys
def tokenize(line):
tok = ''
for c in line:
if c == " ":
if tok:
yield tok
tok = ""
elif c == "(" or c==")":
if tok:
yield tok
yield c
tok = ""
else:
tok += c
if tok:
yield tok
tok = ""
def parse_tree(line):
toks = tokenize(line)
stack = []
t = next(toks)
try:
while t:
if t=="(":
stack.append(t)
elif t==")":
subtree = []
s = stack.pop()
while s[0]!="(":
subtree.append(s)
s = stack.pop()
stack.append(tuple(reversed(subtree)))
else:
stack.append(t)
t = next(toks)
except StopIteration:
return stack.pop()
def get_leafs(tree):
if isinstance(tree,str):
return [tree]
else:
result = []
for x in tree[1:]:
result.extend(get_leafs(x))
return result
def get_constituents(tree,left=0):
if not tree:
return [], left
start = left
if isinstance(tree,str):
return [],left+1
else:
result = []
phrase = tree[0]
for subtree in tree[1:]:
subspans, right = get_constituents(subtree, left)
result.extend(subspans)
left = right
result.append((phrase,start,left))
return result, left
def compute_parseval_scores(gold_tree, test_tree):
gold_const = set(get_constituents(gold_tree)[0])
test_const = set(get_constituents(test_tree)[0])
if not test_const:
return 0.0,0.0,0.0
correct = len(gold_const.intersection(test_const))
recall = correct / float(len(gold_const))
precision = correct / float(len(test_const))
fscore = (2*precision*recall) / (precision+recall)
return precision, recall, fscore
def evaluate_parser(parser, treebank_file):
total = 0
unparsed = 0
fscore_sum = 0.0
for line in treebank_file:
gold_tree = parse_tree(line.strip())
tokens = get_leafs(gold_tree)
print("input: ",tokens)
chart,probs = parser.parse_with_backpointers(tokens)
print("target: ",gold_tree)
total += 1
if not chart:
unparsed += 1
res = tuple()
else:
try:
res = get_tree(chart,0,len(tokens),parser.grammar.startsymbol)
except KeyError:
unparsed += 1
res = tuple()
print("predicted: ",res)
#print(compute_parseval_scores(gold_tree, res))
p,r,f = compute_parseval_scores(gold_tree, res)
fscore_sum += f
print("P:{} R:{} F:{}".format(p,r,f))
print()
parsed = total-unparsed
if parsed == 0:
coverage = 0.0
fscore_parsed = 0.0
fscore_all = 0.0
else:
coverage = (parsed / total) *100
fscore_parsed = fscore_sum / parsed
fscore_all = fscore_sum / total
print("Coverage: {:.2f}%, Average F-score (parsed sentences): {}, Average F-score (all sentences): {}".format(coverage, fscore_parsed, fscore_all))
if __name__ == "__main__":
if len(sys.argv)!=3:
print("USAGE: python evaluate_parser.py [grammar_file] [test_file]")
sys.exit(1)
with open(sys.argv[1],'r') as grammar_file, open(sys.argv[2],'r') as test_file:
grammar = Pcfg(grammar_file)
parser = CkyParser(grammar)
evaluate_parser(parser,test_file)