diff --git a/kenmerkendewaarden/gemiddeldgetij.py b/kenmerkendewaarden/gemiddeldgetij.py index 25c86dd..7ed7ab3 100644 --- a/kenmerkendewaarden/gemiddeldgetij.py +++ b/kenmerkendewaarden/gemiddeldgetij.py @@ -63,7 +63,6 @@ def calc_gemiddeldgetij(df_meas: pd.DataFrame, df_ext: pd.DataFrame = None, current_station = data_pd_meas_10y.attrs["station"] # TODO: deprecate debug argument+plot (maybe use max HW instead of max tidalrange?) - # TODO: we now call this function three times and deriving the unscaled krommes takes quite some time. Put in different function and cache it. # TODO: add correctie havengetallen HW/LW av/sp/np met slotgemiddelde uit PLSS/modelfit (HW/LW av) if scale_period: @@ -158,7 +157,7 @@ def calc_gemiddeldgetij(df_meas: pd.DataFrame, df_ext: pd.DataFrame = None, ax1.set_title(f'spring- en doodtijkromme {current_station}') # fig.savefig(os.path.join(dir_gemgetij,f'springdoodtijkromme_{current_station}_slotgem{year_slotgem}.png')) - #timeseries for gele boekje (av/sp/np have different lengths, time is relative to HW of av and HW of sp/np are shifted there) #TODO: is this product still necessary? + #timeseries for gele boekje (av/sp/np have different lengths, time is relative to HW of av and HW of sp/np are shifted there) logger.info(f'reshape_signal GEMGETIJ: {current_station}') prediction_av_corr_one = reshape_signal(prediction_av_one, prediction_av_ext_one, HW_goal=HW_av, LW_goal=LW_av, tP_goal=tP_goal) prediction_av_corr_one.index = prediction_av_corr_one.index - prediction_av_corr_one.index[0] # make relative to first timestamp (=HW)