|
9 | 9 |
|
10 | 10 | class PSPModule(nn.Module):
|
11 | 11 | def __init__(self, features, out_features=1024, sizes=(1, 2, 4, 8)):
|
12 |
| - super().__init__() |
| 12 | + super(PSPModule, self).__init__() |
13 | 13 | self.stages = []
|
14 | 14 | self.stages = nn.ModuleList([nn.Conv2d(features, features, 3, 1, 1, bias=False, groups=features) for size in sizes])
|
15 | 15 | self.project = Conv2dBNPReLU(features * (len(sizes) + 1), out_features, 1, 1)
|
@@ -95,24 +95,20 @@ def forward(self, input, input2=None):
|
95 | 95 | return self.act(output)
|
96 | 96 |
|
97 | 97 | class EESPNet(nn.Module):
|
98 |
| - def __init__(self, classes=20, s=2.0): |
| 98 | + def __init__(self): |
99 | 99 | super(EESPNet, self).__init__()
|
100 |
| - reps = [0, 3, 7, 3] |
101 |
| - channels = 3 |
102 |
| - |
103 |
| - r_lim = [13, 11, 9, 7, 5] |
104 |
| - |
105 |
| - config = [32, 128, 256, 512, 1024, 1280] |
| 100 | + r_lim = [13, 11, 9, 7] |
| 101 | + config = [32, 128, 256, 512] |
106 | 102 |
|
| 103 | + channels = 3 |
107 | 104 | self.level1 = Conv2dBNPReLU(channels, config[0], 3, 2)
|
108 |
| - |
109 | 105 | self.level2_0 = DownSampler(config[0], config[1], k=4, r_lim=r_lim[0], down_times=2)
|
110 | 106 |
|
111 | 107 | self.level3_0 = DownSampler(config[1], config[2], k=4, r_lim=r_lim[1], down_times=3)
|
112 |
| - self.level3 = nn.Sequential(*[EESP(config[2], config[2], stride=1, k=4, r_lim=r_lim[2]) for i in range(reps[1])]) |
| 108 | + self.level3 = nn.Sequential(*[EESP(config[2], config[2], stride=1, k=4, r_lim=r_lim[2]) for i in range(3)]) |
113 | 109 |
|
114 | 110 | self.level4_0 = DownSampler(config[2], config[3], k=4, r_lim=r_lim[2], down_times=4)
|
115 |
| - self.level4 = nn.Sequential(*[EESP(config[3], config[3], stride=1, k=4, r_lim=r_lim[3]) for i in range(reps[2])]) |
| 111 | + self.level4 = nn.Sequential(*[EESP(config[3], config[3], stride=1, k=4, r_lim=r_lim[3]) for i in range(7)]) |
116 | 112 |
|
117 | 113 | initWeightsKaiming(self)
|
118 | 114 |
|
|
0 commit comments