forked from onejiin/CycleGAN-VC2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
310 lines (255 loc) · 16.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# -*- coding: utf-8 -*-
import os
import numpy as np
import argparse
import time
import librosa
import tqdm
from preprocess import *
from model import CycleGAN
from data_save import world_encode_data_toLoad, world_encode_data_toSave
def remove_radical_pitch_samples(f0s,mceps,log_f0s_mean,log_f0s_std):
print ("running radical pitch clearing on {} mceps".format(len(mceps)))
filtered_mceps = []
filtered_f0s = []
filtered_out_count = 0
total_count = 0
for i,(f0,mcep) in enumerate(zip(f0s,mceps)):
try:
mask = ((np.ma.log(f0) - log_f0s_mean) ** 2 < log_f0s_std * 0.5).data
filtered_mceps.append(mcep[mask])
filtered_f0s.append(f0[mask])
filtered_out_count += len(mcep)- np.sum(mask)
total_count += len(mcep)
except:
print (f0.shape)
print (traceback.format_exc())
print (i)
print ("filtered {} out of {}".format(filtered_out_count,total_count))
return filtered_mceps, filtered_f0s
def load_speaker_features(file_path):
mcep_params = np.load(file_path, allow_pickle=True)
f0s = mcep_params['f0s']
timeaxes = mcep_params['timeaxes']
sps = mcep_params['sps']
aps = mcep_params['aps']
coded_sps = mcep_params['coded_sps']
return f0s,timeaxes,sps,aps,coded_sps
def train(train_A_dir, train_B_dir, model_dir, model_name, random_seed, validation_A_dir, validation_B_dir, output_dir,
tensorboard_log_dir, gen_model, MCEPs_dim, lambda_list,processed_data_dir):
gen_loss_thres = 100.0
np.random.seed(random_seed)
num_epochs = 5000
mini_batch_size = 1
generator_learning_rate = 0.0002
generator_learning_rate_decay = generator_learning_rate / 200000
discriminator_learning_rate = 0.0001
discriminator_learning_rate_decay = discriminator_learning_rate / 200000
sampling_rate = 44000
num_mcep = MCEPs_dim
frame_period = 5.0
n_frames = 128
lambda_cycle = lambda_list[0]
lambda_identity = lambda_list[1]
Speaker_A_features = os.path.join(processed_data_dir, 'wav_A.npz')
Speaker_B_features = os.path.join(processed_data_dir, 'wav_B.npz')
start_time = time.time()
print ('lookiong for preprocessed data in:{}'.format(processed_data_dir))
if os.path.exists(Speaker_A_features) and os.path.exists(Speaker_B_features):
print ('#### loading processed data #######')
f0s_A, timeaxes_A, sps_A, aps_A, coded_sps_A = load_speaker_features(Speaker_A_features)
f0s_B, timeaxes_B, sps_B, aps_B, coded_sps_B = load_speaker_features(Speaker_B_features)
else:
print('Preprocessing Data...')
if not os.path.exists(processed_data_dir):
os.makedirs(processed_data_dir)
wavs_A = load_wavs(wav_dir=train_A_dir, sr=sampling_rate)
f0s_A, timeaxes_A, sps_A, aps_A, coded_sps_A = world_encode_data(wavs=wavs_A, fs=sampling_rate,
frame_period=frame_period, coded_dim=num_mcep)
np.savez(Speaker_A_features, f0s=f0s_A, timeaxes=timeaxes_A, sps=sps_A, aps=aps_A, coded_sps=coded_sps_A)
del wavs_A
wavs_B = load_wavs(wav_dir=train_B_dir, sr=sampling_rate)
f0s_B, timeaxes_B, sps_B, aps_B, coded_sps_B = world_encode_data(wavs=wavs_B, fs=sampling_rate,
frame_period=frame_period, coded_dim=num_mcep)
np.savez(Speaker_B_features, f0s=f0s_B, timeaxes=timeaxes_B, sps=sps_B, aps=aps_B, coded_sps=coded_sps_B)
del wavs_B
print('Data preprocessing finished !')
return
log_f0s_mean_A, log_f0s_std_A = logf0_statistics(f0s_A)
log_f0s_mean_B, log_f0s_std_B = logf0_statistics(f0s_B)
print('Log Pitch A')
print('Mean: %f, Std: %f' %(log_f0s_mean_A, log_f0s_std_A))
print('Log Pitch B')
print('Mean: %f, Std: %f' %(log_f0s_mean_B, log_f0s_std_B))
coded_sps_A,f0s_A = remove_radical_pitch_samples(f0s_A, coded_sps_A, log_f0s_mean_A, log_f0s_std_A)
coded_sps_B,f0s_B = remove_radical_pitch_samples(f0s_B, coded_sps_B, log_f0s_mean_B, log_f0s_std_B)
print('recalculating mean and std of radical cleared f0s')
log_f0s_mean_A, log_f0s_std_A = logf0_statistics(f0s_A)
log_f0s_mean_B, log_f0s_std_B = logf0_statistics(f0s_B)
coded_sps_A_transposed = transpose_in_list(lst = coded_sps_A)
coded_sps_B_transposed = transpose_in_list(lst = coded_sps_B)
print("Input data fixed.")
coded_sps_A_norm, coded_sps_A_mean, coded_sps_A_std = coded_sps_normalization_fit_transoform(
coded_sps=coded_sps_A_transposed)
coded_sps_B_norm, coded_sps_B_mean, coded_sps_B_std = coded_sps_normalization_fit_transoform(
coded_sps=coded_sps_B_transposed)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
np.savez(os.path.join(model_dir, 'logf0s_normalization.npz'), mean_A=log_f0s_mean_A, std_A=log_f0s_std_A,
mean_B=log_f0s_mean_B, std_B=log_f0s_std_B)
np.savez(os.path.join(model_dir, 'mcep_normalization.npz'), mean_A=coded_sps_A_mean, std_A=coded_sps_A_std,
mean_B=coded_sps_B_mean, std_B=coded_sps_B_std)
if validation_A_dir is not None:
validation_A_output_dir = os.path.join(output_dir, 'converted_A')
if not os.path.exists(validation_A_output_dir):
os.makedirs(validation_A_output_dir)
if validation_B_dir is not None:
validation_B_output_dir = os.path.join(output_dir, 'converted_B')
if not os.path.exists(validation_B_output_dir):
os.makedirs(validation_B_output_dir)
end_time = time.time()
time_elapsed = end_time - start_time
print('Preprocessing Done.')
print('Time Elapsed for Data Preprocessing: %02d:%02d:%02d' % (
time_elapsed // 3600, (time_elapsed % 3600 // 60), (time_elapsed % 60 // 1)))
# ---------------------------------------------- Data preprocessing ---------------------------------------------- #
# Model define
model = CycleGAN(num_features = num_mcep, log_dir=tensorboard_log_dir, model_name=model_name, gen_model=gen_model)
# load model
if os.path.exists(os.path.join(model_dir, (model_name+".index"))) == True:
model.load(filepath=os.path.join(model_dir, model_name))
# =================================================== Training =================================================== #
for epoch in range(num_epochs):
print('Epoch: %d' % epoch)
start_time_epoch = time.time()
dataset_A, dataset_B = sample_train_data(dataset_A = coded_sps_A_norm, dataset_B = coded_sps_B_norm, n_frames = n_frames)
n_samples = dataset_A.shape[0]
# -------------------------------------------- one epoch learning -------------------------------------------- #
for i in tqdm.tqdm(range(n_samples // mini_batch_size)):
num_iterations = n_samples // mini_batch_size * epoch + i
if num_iterations > 10000:
lambda_identity = 0
if num_iterations > 200000:
generator_learning_rate = max(0, generator_learning_rate - generator_learning_rate_decay)
discriminator_learning_rate = max(0, discriminator_learning_rate - discriminator_learning_rate_decay)
start = i * mini_batch_size
end = (i + 1) * mini_batch_size
generator_loss, discriminator_loss, generator_loss_A2B = model.train\
(input_A = dataset_A[start:end], input_B = dataset_B[start:end],
lambda_cycle = lambda_cycle, lambda_identity = lambda_identity,
generator_learning_rate = generator_learning_rate, discriminator_learning_rate = discriminator_learning_rate)
# issue #4,
# model.summary()
# Minimum AtoB loss model save
# if gen_loss_thres > generator_loss_A2B:
# gen_loss_thres = generator_loss_A2B
# best_model_name = 'Bestmodel' + model_name
# model.save(directory=model_dir, filename=best_model_name)
# print("generator loss / generator A2B loss ", generator_loss, generator_loss_A2B)
if i % 50 == 0:
print('Iteration: {:07d}, Generator Learning Rate: {:.7f}, Discriminator Learning Rate: {:.7f}, Generator Loss : {:.3f}, Discriminator Loss : {:.3f}'.format(num_iterations, generator_learning_rate, discriminator_learning_rate, generator_loss, discriminator_loss))
# Last model save
if epoch % 10 == 0:
model.save(directory = model_dir, filename = model_name)
end_time_epoch = time.time()
time_elapsed_epoch = end_time_epoch - start_time_epoch
print('Time Elapsed for This Epoch: %02d:%02d:%02d' % (time_elapsed_epoch // 3600, (time_elapsed_epoch % 3600 // 60), (time_elapsed_epoch % 60 // 1)))
# -------------------------------------------- one epoch learning -------------------------------------------- #
# ------------------------------------------- validation inference ------------------------------------------- #
if validation_A_dir is not None:
# if epoch % 50 == 0:
if epoch % 10 == 0:
print('Generating Validation Data B from A...')
for file in os.listdir(validation_A_dir):
filepath = os.path.join(validation_A_dir, file)
wav, _ = librosa.load(filepath, sr = sampling_rate, mono = True)
wav = wav_padding(wav = wav, sr = sampling_rate, frame_period = frame_period, multiple = 4)
f0, timeaxis, sp, ap = world_decompose(wav = wav, fs = sampling_rate, frame_period = frame_period)
f0_converted = pitch_conversion(f0 = f0, mean_log_src = log_f0s_mean_A, std_log_src = log_f0s_std_A, mean_log_target = log_f0s_mean_B, std_log_target = log_f0s_std_B)
coded_sp = world_encode_spectral_envelop(sp = sp, fs = sampling_rate, dim = num_mcep)
coded_sp_transposed = coded_sp.T
coded_sp_norm = (coded_sp_transposed - coded_sps_A_mean) / coded_sps_A_std
coded_sp_converted_norm = model.test(inputs = np.array([coded_sp_norm]), direction = 'A2B')[0]
coded_sp_converted = coded_sp_converted_norm * coded_sps_B_std + coded_sps_B_mean
coded_sp_converted = coded_sp_converted.T
coded_sp_converted = np.ascontiguousarray(coded_sp_converted)
decoded_sp_converted = world_decode_spectral_envelop(coded_sp = coded_sp_converted, fs = sampling_rate)
wav_transformed = world_speech_synthesis(f0 = f0_converted, decoded_sp = decoded_sp_converted, ap = ap, fs = sampling_rate, frame_period = frame_period)
librosa.output.write_wav(os.path.join(validation_A_output_dir, os.path.basename(file)), wav_transformed, sampling_rate)
# break
if validation_B_dir is not None:
# if epoch % 50 == 0:
if epoch % 10 == 0:
print('Generating Validation Data A from B...')
for file in os.listdir(validation_B_dir):
filepath = os.path.join(validation_B_dir, file)
wav, _ = librosa.load(filepath, sr = sampling_rate, mono = True)
wav = wav_padding(wav = wav, sr = sampling_rate, frame_period = frame_period, multiple = 4)
f0, timeaxis, sp, ap = world_decompose(wav = wav, fs = sampling_rate, frame_period = frame_period)
f0_converted = pitch_conversion(f0 = f0, mean_log_src = log_f0s_mean_B, std_log_src = log_f0s_std_B, mean_log_target = log_f0s_mean_A, std_log_target = log_f0s_std_A)
coded_sp = world_encode_spectral_envelop(sp = sp, fs = sampling_rate, dim = num_mcep)
coded_sp_transposed = coded_sp.T
coded_sp_norm = (coded_sp_transposed - coded_sps_B_mean) / coded_sps_B_std
coded_sp_converted_norm = model.test(inputs = np.array([coded_sp_norm]), direction = 'B2A')[0]
coded_sp_converted = coded_sp_converted_norm * coded_sps_A_std + coded_sps_A_mean
coded_sp_converted = coded_sp_converted.T
coded_sp_converted = np.ascontiguousarray(coded_sp_converted)
decoded_sp_converted = world_decode_spectral_envelop(coded_sp = coded_sp_converted, fs = sampling_rate)
wav_transformed = world_speech_synthesis(f0 = f0_converted, decoded_sp = decoded_sp_converted, ap = ap, fs = sampling_rate, frame_period = frame_period)
librosa.output.write_wav(os.path.join(validation_B_output_dir, os.path.basename(file)), wav_transformed, sampling_rate)
# break
# ------------------------------------------- validation inference ------------------------------------------- #
# =================================================== Training =================================================== #
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train CycleGAN-VC2 model')
train_A_dir_default = '/media/dan/Disk/ml+dl+dsp/Pytorch-CycleGAN-VC2/train_44k/podcast'
train_B_dir_default = '/media/dan/Disk/ml+dl+dsp/Pytorch-CycleGAN-VC2/train_44k/nas'
model_dir_default = './model/sf1_tf2'
model_name_default = 'sf1_tf2.ckpt'
random_seed_default = 0
validation_A_dir_default = '/root/onejin/test/ma'
validation_B_dir_default = '/root/onejin/test/fe'
output_dir_default = './validation_output'
tensorboard_log_dir_default = './log'
generator_model_default = 'CycleGAN-VC2'
MCEPs_dim_default = 32
lambda_cycle_defalut = 10.0
lambda_identity_defalut = 5.0
processed_data_dir = './processed_data'
parser.add_argument('--train_A_dir', type = str, help = 'Directory for A.', default = train_A_dir_default)
parser.add_argument('--train_B_dir', type = str, help = 'Directory for B.', default = train_B_dir_default)
parser.add_argument('--model_dir', type = str, help = 'Directory for saving models.', default = model_dir_default)
parser.add_argument('--model_name', type = str, help = 'File name for saving model.', default = model_name_default)
parser.add_argument('--random_seed', type = int, help = 'Random seed for model training.', default = random_seed_default)
parser.add_argument('--validation_A_dir', type=str,
help='Convert validation A after each training epoch. If set none, no conversion would be done during the training.',
default=validation_A_dir_default)
parser.add_argument('--validation_B_dir', type=str,
help='Convert validation B after each training epoch. If set none, no conversion would be done during the training.',
default=validation_B_dir_default)
parser.add_argument('--output_dir', type = str, help = 'Output directory for converted validation voices.', default = output_dir_default)
parser.add_argument('--tensorboard_log_dir', type = str, help = 'TensorBoard log directory.', default = tensorboard_log_dir_default)
parser.add_argument('--gen_model', type=str, help='generator_gatedcnn / generator_gatedcnn_SAGAN', default=generator_model_default)
parser.add_argument('--MCEPs_dim', type=int, help='input dimension', default=MCEPs_dim_default)
parser.add_argument('--lambda_cycle', type=float, help='lambda cycle', default=lambda_cycle_defalut)
parser.add_argument('--lambda_identity', type=float, help='lambda identity', default=lambda_identity_defalut)
parser.add_argument('--processed_data_dir', type=str, help='processed_data_dir', default=processed_data_dir)
argv = parser.parse_args()
train_A_dir = argv.train_A_dir
train_B_dir = argv.train_B_dir
model_dir = argv.model_dir
model_name = argv.model_name
random_seed = argv.random_seed
validation_A_dir = None if argv.validation_A_dir == 'None' or argv.validation_A_dir == 'none' else argv.validation_A_dir
validation_B_dir = None if argv.validation_B_dir == 'None' or argv.validation_B_dir == 'none' else argv.validation_B_dir
output_dir = argv.output_dir
tensorboard_log_dir = argv.tensorboard_log_dir
generator_model = argv.gen_model
MCEPs_dim = argv.MCEPs_dim
lambda_cycle = argv.lambda_cycle
lambda_identity = argv.lambda_identity
processed_data_dir = argv.processed_data_dir
train(train_A_dir=train_A_dir, train_B_dir=train_B_dir, model_dir=model_dir, model_name=model_name,
random_seed=random_seed, validation_A_dir=validation_A_dir, validation_B_dir=validation_B_dir,
output_dir=output_dir, tensorboard_log_dir=tensorboard_log_dir, gen_model=generator_model,
MCEPs_dim=MCEPs_dim, lambda_list=[lambda_cycle, lambda_identity],processed_data_dir=processed_data_dir)