-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwrapper.py
223 lines (186 loc) · 7.3 KB
/
wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import json
import random
from collections import Counter
from pathlib import Path
from typing import List, Dict, Any
from copy import deepcopy
import torch
from fire import Fire
from pydantic.main import BaseModel
from tqdm import tqdm
from nltk import word_tokenize, pos_tag
from modeling import (RelationGenerator, RelationModel,
select_model)
from utils import (RelationSentence, delete_checkpoints, safe_divide, load_u2t)
class Sentence(BaseModel):
triplets: List[RelationSentence]
@property
def tokens(self) -> List[str]:
return self.triplets[0].tokens
@property
def text(self) -> str:
return " ".join(self.tokens)
def assert_valid(self):
assert len(self.tokens) > 0
for t in self.triplets:
assert t.text == self.text
assert len(t.head) > 0
assert len(t.tail) > 0
assert len(t.label) > 0
class Dataset(BaseModel):
sents: List[Sentence]
def get_labels(self) -> List[str]:
return sorted(set(t.label for s in self.sents for t in s.triplets))
@classmethod
def combine_label(cls, dev_l, test_l):
for key in dev_l.keys():
if key not in test_l:
test_l[key] = deepcopy(dev_l[key])
else:
for cpt in dev_l[key]:
if cpt not in test_l[key]:
test_l[key].append(cpt)
return test_l
@classmethod
def load(cls, path: str):
with open(path) as f:
sents = [Sentence(**json.loads(line)) for line in f]
return cls(sents=sents)
def save(self, path: str):
Path(path).parent.mkdir(exist_ok=True, parents=True)
with open(path, "w") as f:
for s in self.sents:
f.write(s.json() + "\n")
@classmethod
def load_persona(cls):
data = load_u2t(map_type='all')
return cls(sents=data)
def filter_labels(self, labels: List[str]):
label_set = set(labels)
sents = []
for s in self.sents:
triplets = [t for t in s.triplets if t.label in label_set]
if triplets:
s = s.copy(deep=True)
s.triplets = triplets
sents.append(s)
return Dataset(sents=sents)
def train_test_split(self, test_size: int, random_seed: int, by_mean: str):
random.seed(random_seed)
if by_mean == 'by_label':
labels = self.get_labels()
labels_test = random.sample(labels, k=test_size)
labels_train = sorted(set(labels) - set(labels_test))
sents_train = self.filter_labels(labels_train).sents
sents_test = self.filter_labels(labels_test).sents
elif by_mean == 'test_other':
labels = self.get_labels().pop('other')
labels_test = random.sample(labels, k=test_size)
labels_train = sorted(set(labels) - set(labels_test))
labels_test = labels_test + {'other'}
sents_train = self.filter_labels(labels_train).sents
sents_test = self.filter_labels(labels_test).sents
else:
sents_train = [s for s in self.sents]
sents_test = random.sample(self.sents, k=test_size)
banned = set(s.text for s in sents_test) # Prevent sentence overlap
sents_train = [s for s in sents_train if s.text not in banned]
assert len(self.sents) == len(sents_train) + len(sents_test)
return Dataset(sents=sents_train), Dataset(sents=sents_test)
def analyze(self):
info = dict(
sents=len(self.sents),
unique_texts=len(set(s.triplets[0].text for s in self.sents)),
lengths=str(Counter(len(s.triplets) for s in self.sents)),
labels=len(self.get_labels()),
)
print(json.dumps(info, indent=2))
def write_data_splits(
path_in: str,
mode: str,
folder_out: str = "outputs/data/splits/zero_rte",
num_dev_labels: int = 5,
num_test_labels: List[int] = [5, 10, 15],
seeds: List[int] = [0, 1, 2, 3, 4],
by_mean: str = 'test_other'
):
for n in num_test_labels:
for s in seeds:
if mode == "fewrel":
data = Dataset.load_fewrel(path_in)
elif mode == "wiki":
data = Dataset.load_wiki(path_in)
elif mode == "persona":
data = Dataset.load_persona()
else:
raise ValueError()
train, test = data.train_test_split(
test_size=n, random_seed=s, by_mean=by_mean
)
train, dev = train.train_test_split(
test_size=num_dev_labels, random_seed=s, by_mean=by_mean
)
del data
if by_mean == 'test_other':
folder_out = folder_out + "_other"
for key, data in dict(train=train, dev=dev, test=test).items():
name = f"unseen_{n}_seed_{s}"
path = Path(folder_out) / Path(path_in).stem / name / f"{key}.jsonl"
data.save(str(path))
print(dict(key=key, labels=len(data.get_labels()), path=path))
class Generator(BaseModel):
load_dir: str
save_dir: str
num_gen_per_label: int = 250
model_name: str = "generate"
encoder_name: str = "generate"
model_kwargs: dict = {}
def get_model(self) -> RelationModel:
model = select_model(
name=self.model_name,
encoder_name=self.encoder_name,
model_dir=str(Path(self.save_dir) / "model"),
model_name=self.load_dir,
data_dir=str(Path(self.save_dir) / "data"),
do_pretrain=False,
**self.model_kwargs,
)
return model
def write_data(self, data: Dataset, name: str) -> str:
model = self.get_model()
path_out = Path(model.data_dir) / f"{name}.txt"
path_out.parent.mkdir(exist_ok=True, parents=True)
encoder = model.get_encoder()
lines = [encoder.encode_to_line(t) for s in data.sents for t in s.triplets]
random.seed(model.random_seed)
random.shuffle(lines)
with open(path_out, "w") as f:
f.write("".join(lines))
return str(path_out)
def fit(self, path_train: str, path_dev: str):
model = self.get_model()
if Path(model.model_dir).exists():
print("model directory already exists:", model.model_dir)
return
data_train = Dataset.load(path_train)
data_dev = Dataset.load(path_dev)
path_train = self.write_data(data_train, "train")
path_dev = self.write_data(data_dev, "dev")
model.fit(path_train=path_train, path_dev=path_dev)
delete_checkpoints(model.model_dir)
def generate(self, labels: List[str], path_out: str):
if Path(path_out).exists():
return
model = self.get_model()
pipe = model.make_pipe()
groups = {}
assert isinstance(model, RelationGenerator)
for relation in tqdm(labels):
triplets, raw = model.generate(relation, self.num_gen_per_label, pipe=pipe)
for t in triplets:
groups.setdefault(t.text, []).append(t)
sents = [Sentence(triplets=lst) for lst in groups.values()]
data = Dataset(sents=sents)
data.save(path_out)
if __name__ == "__main__":
# Fire()