forked from AutoLidarPerception/common_lib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parameter.hpp
292 lines (249 loc) · 12.7 KB
/
parameter.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/*
* Copyright (C) 2019 by AutoSense Organization. All rights reserved.
* Gary Chan <[email protected]>
*
* Help functions for loading parameters from ROS Parameters Server
*/
#ifndef COMMON_INCLUDE_COMMON_PARAMETER_HPP_
#define COMMON_INCLUDE_COMMON_PARAMETER_HPP_
#include <string>
#include <vector>
#include "common/types/type.h"
namespace autosense {
namespace common {
static VolumetricModelParams getVolumetricModelParams(
const ros::NodeHandle& nh, const std::string& ns_prefix) {
VolumetricModelParams params;
std::string volumetric_ns = ns_prefix + "/VolumetricModels";
nh.param<bool>(volumetric_ns + "/use_car_volumetric_model",
params.use_car_model, false);
std::vector<double> volumetric_model(6, 0.);
nh.getParam(volumetric_ns + "/car_volumetric_model", volumetric_model);
params.model_car.model_type = CAR;
params.model_car.l_min = volumetric_model[0];
params.model_car.l_max = volumetric_model[1];
params.model_car.w_min = volumetric_model[2];
params.model_car.w_max = volumetric_model[3];
params.model_car.h_min = volumetric_model[4];
params.model_car.h_max = volumetric_model[5];
// common::displayModelInfo(model_car_);
nh.param<bool>(volumetric_ns + "/use_human_volumetric_model",
params.use_car_model, false);
volumetric_model.resize(6, 0.);
nh.getParam(volumetric_ns + "/human_volumetric_model", volumetric_model);
params.model_car.model_type = PEDESTRIAN;
params.model_human.l_min = volumetric_model[0];
params.model_human.l_max = volumetric_model[1];
params.model_human.w_min = volumetric_model[2];
params.model_human.w_max = volumetric_model[3];
params.model_human.h_min = volumetric_model[4];
params.model_human.h_max = volumetric_model[5];
return params;
}
static ROIParams getRoiParams(const ros::NodeHandle& nh,
const std::string& ns_prefix) {
ROIParams params;
const std::string ns = ns_prefix + "/roi";
nh.getParam(ns + "/roi_type", params.type);
nh.getParam(ns + "/roi_lidar_height_m", params.roi_lidar_height_m);
// Horizontal range
nh.getParam(ns + "/roi_radius_min_m", params.roi_radius_min_m);
// "Cylinder" roi filter do not need `roi_radius_max_m`
nh.param(ns + "/roi_radius_max_m", params.roi_radius_max_m, -1.0f);
// Vertical range
nh.getParam(ns + "/roi_height_below_m", params.roi_height_below_m);
nh.getParam(ns + "/roi_height_above_m", params.roi_height_above_m);
return params;
}
static SegmenterParams getSegmenterParams(const ros::NodeHandle& nh,
const std::string& ns_prefix) {
SegmenterParams params;
const std::string ns = ns_prefix + "/Segmenter";
// DoN Segmenter
nh.getParam(ns + "/segmenter_type", params.segmenter_type);
nh.getParam(ns + "/don_segmenter_small_scale",
params.don_segmenter_small_scale);
nh.getParam(ns + "/don_segmenter_large_scale",
params.don_segmenter_large_scale);
nh.getParam(ns + "/don_segmenter_range_threshold",
params.don_segmenter_range_threshold);
nh.getParam(ns + "/don_segmenter_ec_min_size",
params.don_segmenter_ec_min_size);
nh.getParam(ns + "/don_segmenter_ec_max_size",
params.don_segmenter_ec_max_size);
nh.getParam(ns + "/don_segmenter_ec_tolerance",
params.don_segmenter_ec_tolerance);
// Region Growing Segmenter
nh.getParam(ns + "/rg_knn_for_normals", params.rg_knn_for_normals);
nh.getParam(ns + "/rg_radius_for_normals", params.rg_radius_for_normals);
nh.getParam(ns + "/rg_curvature_threshold", params.rg_curvature_threshold);
nh.getParam(ns + "/rg_min_cluster_size", params.rg_min_cluster_size);
nh.getParam(ns + "/rg_max_cluster_size", params.rg_max_cluster_size);
nh.getParam(ns + "/rg_knn_for_growing", params.rg_knn_for_growing);
nh.getParam(ns + "/rg_smoothness_threshold_deg",
params.rg_smoothness_threshold_deg);
// Region Euclidean Cluster non-ground Segmenter
// nh.param<int>(ns + "/rec_region_size", params.rec_region_size, 14);
nh.getParam(ns + "/rec_region_sizes", params.rec_region_sizes);
params.rec_region_size = params.rec_region_sizes.size();
nh.param<double>(ns + "/rec_region_initial_tolerance",
params.rec_region_initial_tolerance, 0.2);
nh.param<double>(ns + "/rec_region_delta_tolerance",
params.rec_region_delta_tolerance, 0.2);
nh.param<bool>(ns + "/rec_use_region_merge", params.rec_use_region_merge,
false);
nh.param<double>(ns + "/rec_region_merge_tolerance",
params.rec_region_merge_tolerance, 0.);
nh.param<int>(ns + "/rec_min_cluster_size", params.rec_min_cluster_size, 5);
nh.param<int>(ns + "/rec_max_cluster_size", params.rec_max_cluster_size,
30000);
// Euclidean Cluster non-ground Segmenter
nh.param<double>(ns + "/ec_tolerance", params.ec_tolerance, 0.25);
nh.param<int>(ns + "/ec_min_cluster_size", params.ec_min_cluster_size, 5);
nh.param<int>(ns + "/ec_max_cluster_size", params.ec_max_cluster_size,
30000);
// Ground Plane Fitting ground Segmenter
nh.getParam(ns + "/gpf_sensor_model", params.gpf_sensor_model);
nh.getParam(ns + "/gpf_sensor_height", params.gpf_sensor_height);
nh.param<int>(ns + "/gpf_num_segment", params.gpf_num_segment, 1);
nh.getParam(ns + "/gpf_num_iter", params.gpf_num_iter);
nh.getParam(ns + "/gpf_num_lpr", params.gpf_num_lpr);
nh.getParam(ns + "/gpf_th_lprs", params.gpf_th_lprs);
nh.getParam(ns + "/gpf_th_seeds", params.gpf_th_seeds);
nh.getParam(ns + "/gpf_th_gnds", params.gpf_th_gnds);
// RANSAC ground Segmenter
nh.param<double>(ns + "/sac_distance_threshold",
params.sac_distance_threshold, 0.3);
nh.param<int>(ns + "/sac_max_iteration", params.sac_max_iteration, 100);
nh.param<double>(ns + "/sac_probability", params.sac_probability, 0.99);
return params;
}
static FeatureExtractorParams getFeatureExtractorParams(
const ros::NodeHandle& nh, const std::string& ns_prefix) {
FeatureExtractorParams params;
const std::string ns = ns_prefix + "/Features";
nh.getParam(ns + "/extractor_type", params.extractor_type);
return params;
}
static ClassifierParams getClassfierParams(const ros::NodeHandle& nh,
const std::string& ns_prefix) {
ClassifierParams params;
const std::string ns = ns_prefix + "/Classifier";
nh.getParam(ns + "/classifier_type", params.classifier_type);
nh.getParam(ns + "/classifier_model_path", params.classifier_model_path);
// If true, save model in model specification×tamps name
nh.getParam(ns + "/classifier_save", params.classifier_save);
nh.getParam(ns + "/classifier_max_num_samples",
params.classifier_max_num_samples);
// empty means no need to load, *.xml
nh.getParam(ns + "/rf_model_filename", params.rf_model_filename);
// empty means no need to load, *.model
nh.getParam(ns + "/svm_model_filename", params.svm_model_filename);
// *.range
nh.getParam(ns + "/svm_range_filename", params.svm_range_filename);
//----------------- Random Forest Classifier parameters
nh.param<double>(ns + "/rf_threshold_to_accept_object",
params.rf_threshold_to_accept_object, 1.0);
// the depth of the tree
nh.param<int>(ns + "/rf_max_depth", params.rf_max_depth, 25);
// rf_min_sample_ratio*num_samples==>min sample count
nh.param<double>(ns + "/rf_min_sample_ratio", params.rf_min_sample_ratio,
0.01);
// regression accuracy: 0->N/A
nh.param<double>(ns + "/rf_regression_accuracy",
params.rf_regression_accuracy, 0);
// compute surrogate split, false->no missing data
nh.param<bool>(ns + "/rf_use_surrogates", params.rf_use_surrogates, false);
// max number of categories (use sub-optimal algorithm for larger numbers)
nh.param<int>(ns + "/rf_max_categories", params.rf_max_categories, 0);
// weights of each classification for classes, commented for null
nh.getParam(ns + "/rf_priors", params.rf_priors);
// if true then variable importance will be calculated
nh.param<bool>(ns + "/rf_calc_var_importance",
params.rf_calc_var_importance, true);
// number of variables randomly selected at node and used to find the best
// split(s)
nh.param<int>(ns + "/rf_n_active_vars", params.rf_n_active_vars, 4);
// max number of trees in the forest
nh.param<int>(ns + "/rf_max_num_of_trees", params.rf_max_num_of_trees, 100);
// forest accuracy
nh.param<double>(ns + "/rf_accuracy", params.rf_accuracy, 0.01);
//----------------- Random Forest Classifier parameters
nh.getParam(ns + "/svm_threshold_to_accept_object",
params.svm_threshold_to_accept_object);
nh.getParam(ns + "/svm_find_the_best_training_parameters",
params.svm_find_the_best_training_parameters);
// feature range
nh.getParam(ns + "/svm_feature_range_lower",
params.svm_feature_range_lower);
nh.getParam(ns + "/svm_feature_range_upper",
params.svm_feature_range_upper);
return params;
}
static TrackingWorkerParams getTrackingWorkerParams(
const ros::NodeHandle& nh, const std::string& ns_prefix) {
TrackingWorkerParams params;
const std::string ns = ns_prefix + "/TrackingWorker";
//----------------- Matcher: tracker<->observed object association
nh.getParam(ns + "/matcher_method_name", params.matcher_method_name);
nh.getParam(ns + "/matcher_match_distance_maximum",
params.matcher_match_distance_maximum);
nh.getParam(ns + "/matcher_location_distance_weight",
params.matcher_location_distance_weight);
nh.getParam(ns + "/matcher_direction_distance_weight",
params.matcher_direction_distance_weight);
nh.getParam(ns + "/matcher_bbox_size_distance_weight",
params.matcher_bbox_size_distance_weight);
nh.getParam(ns + "/matcher_point_num_distance_weight",
params.matcher_point_num_distance_weight);
nh.getParam(ns + "/matcher_histogram_distance_weight",
params.matcher_histogram_distance_weight);
//----------------- Tracker
// Tracker Filter setup
nh.getParam(ns + "/filter_method_name", params.filter_method_name);
nh.getParam(ns + "/filter_use_adaptive", params.filter_use_adaptive);
nh.getParam(ns + "/filter_association_score_maximum",
params.filter_association_score_maximum);
nh.getParam(ns + "/filter_measurement_noise",
params.filter_measurement_noise);
nh.getParam(ns + "/filter_initial_velocity_noise",
params.filter_initial_velocity_noise);
nh.getParam(ns + "/filter_xy_propagation_noise",
params.filter_xy_propagation_noise);
nh.getParam(ns + "/filter_z_propagation_noise",
params.filter_z_propagation_noise);
nh.getParam(ns + "/filter_breakdown_threshold_maximum",
params.filter_breakdown_threshold_maximum);
// Basic Tracker setup
nh.getParam(ns + "/tracker_cached_history_size_maximum",
params.tracker_cached_history_size_maximum);
nh.getParam(ns + "/tracker_consecutive_invisible_maximum",
params.tracker_consecutive_invisible_maximum);
nh.getParam(ns + "/tracker_visible_ratio_minimum",
params.tracker_visible_ratio_minimum);
nh.getParam(ns + "/tracker_acceleration_noise_maximum",
params.tracker_acceleration_noise_maximum);
nh.getParam(ns + "/tracker_speed_noise_maximum",
params.tracker_speed_noise_maximum);
//----------------- Tracking Objects collect conditions
nh.getParam(ns + "/tracking_histogram_bin_size",
params.tracking_histogram_bin_size);
nh.getParam(ns + "/tracking_use_histogram_for_match",
params.tracking_use_histogram_for_match);
nh.getParam(ns + "/tracking_collect_age_minimum",
params.tracking_collect_age_minimum);
nh.getParam(ns + "/tracking_collect_consecutive_invisible_maximum",
params.tracking_collect_consecutive_invisible_maximum);
return params;
}
static Parameters getParameters(const ros::NodeHandle& nh,
const std::string& ns_prefix) {
Parameters params;
params.segmenter = getSegmenterParams(nh, ns_prefix);
params.feature_extractor = getFeatureExtractorParams(nh, ns_prefix);
params.classifier = getClassfierParams(nh, ns_prefix);
return params;
}
} // namespace common
} // namespace autosense
#endif // COMMON_INCLUDE_COMMON_PARAMETER_HPP_