
Protein Isoelectric Point Database
EE4FYP Report

MEng Electronic Engineering
& Computer Science

Student: Chris Cummins
Supervisor: Ian Nabney
Moderator: Zuoyin Tang

Date: May 2014

Electronic Engineering,
School of Engineering and Applied Science,

Aston University

Protein Isoelectric Point Database
EE4FYP Report

Chris Cummins

Abstract
The isoelectric point or pI of a protein corresponds to the solution pH at which the

net surface charge is zero. Since the earliest days of solution biochemistry, the pI has
been recorded and reported, and literature reports of pI abound. The protein isoelectric
point database (PIP-DB) has collected and collated this legacy data to provide an in-
creasingly comprehensive database for comparison and benchmarking purposes. As part
of a collaboration between Aston University’s Computer Science and Life and Health Sci-
ences departments, a web application has been developed to warehouse this database and
provide public access to this important information.

A schema and file format (YAPS) has been designed to house protein isoelectric point
datasets, with appropriate tooling to convert between PIP-DB and the YAPS format. A
search engine and domain specific language has been designed which enables searching
of PIP-DB by representing compound queries using tree structures in LISP. Support for
protein sequence searching has been implemented using the NCBI BLAST+ search tools.

A human-centred approach to designing web applications has been adopted, with a
heavy focus on interaction design and usability testing. The results of usability testing
show numerous advantages in the interface design, such as a widget which dynamically
indicates the number of results to be returned by a search engine query.

A public API for allowing programmatic communication with the search engine has
been designed. The website makes extensive use of mobile code, implementing a thin
presentation layer wrapper around the API. The use of mobile code in websites is discussed
and a comparison is made with server-side rendering of HTML.

A unique emphasis has been placed on development of infrastructure, with several new
tools being written for reuse in other projects. Among these is the novel application of
Markov text generators for creating test payloads from confidential datasets, and a project
management program (pipbot) which automates version control and build configurations.

A parallelised build system has been developed which provides homogeneous devel-
opment and deployment configurations. Tests show how the use of shell-level parallelism
reduces build times by a factor of 5. An implementation of checksum based cache invali-
dation and on-demand build systems using the Linux’s inotify subsystem is described.

Acknowledgements
I would like to thank Ian Nabney for the excellent continued supervision and guidance,

without which this project would not have been possible. Further thanks to Darren Flower
for providing the dataset and for patiently enduring my lowly understanding of the natural
sciences. I would like to acknowledge Kate Sugden and all of the academic staff at Aston
University who I’ve had the pleasure of being taught by. Special thanks to Fraser Crofts,
Ben Stone, Shahzad Mumtaz, Mahmood Jasmin, and Dan Clarke for volunteering their
time to help with usability testing.

i

Contents

1. Introduction 1

2. Risk Assessment 5

3. Process 6
3.1. Development process . 6
3.2. Design process . 11

4. Infrastructure 14
4.1. Build automation . 14
4.2. Test automation . 19
4.3. Task automation . 22

5. Product 25
5.1. Implementation of the prototype . 25
5.2. Programming language selection . 26
5.3. Prototype rewrite . 29
5.4. Persistent storage . 31
5.5. Search engine design . 35
5.6. Website design and usage . 40

6. Evaluation 44
6.1. Usability testing . 44
6.2. Quantitative evaluation . 45

7. Conclusions 47

Appendix A. Risk mitigation strategies 48

Appendix B. D1 and M1 comparison screenshots 50

Appendix C. Usability testing procedure 52

Appendix D. Usability testing scenarios 54

Appendix E. Criteria-based evaluation results 56

Bibliography 59

ii

List of Figures

1.1. Project development timeline . 2
1.2. Archive directory structure . 3

3.1. Screenshot of GitHub project homepage 7
3.2. Screenshot of GitHub’s pip-db issue tracker 8
3.3. Screenshot of open project milestones . 9
3.4. D1 design mockups for site pages . 12
3.5. D2 design mockups for site pages . 12
3.6. D1 interaction design for a simple use case 13

4.1. Flowchart of build system HTML, CSS, and JS subsystem 16
4.2. Graph of build system execution times with optimisations 18
4.3. Screenshot of test coverage report . 21
4.4. Proportion of populated fields in PIP-DB 23
4.5. Example pipbot session . 24

5.1. Example ring handler response map . 28
5.2. Structure of the query tree for composing searches 35
5.3. Search form sequence diagram . 39
5.4. pip-db homepage . 40
5.5. pip-db advanced search page . 41
5.6. Autocompletion suggestions in pip-db . 41
5.7. pip-db results indicator . 42
5.8. pip-db results page . 42
5.9. pip-db record page . 43
5.10. pip-db download results page . 43

iii

List of Tables

2.1. Project risks . 5

3.1. Issue tracker labels . 9
3.2. Development model branch names . 10
3.3. Project log details . 10

5.1. Server-side programming language comparison 26
5.2. Yet Another Protein Schema definition . 33
5.3. Query component symbols and their definitions 34

iv

Listings

4.1. Pseudocode for compiling a JavaScript source 17
4.2. Markov chain implementation . 20
4.3. Markov text generator . 20

5.1. An imperative implementation of Fizz buzz in Java 27
5.2. A functional implementation of Fizz buzz in Clojure 27
5.3. Application ring handler routes . 29
5.4. Upload page ring handlers . 30
5.5. Example Clojure representation of HTML elements 30
5.6. Generated HTML for the Clojure example 30
5.7. Example YAPS encoded dataset . 32
5.8. Pseudocode for generating unique record identifiers 34
5.9. Clojure implementation of the query tree 36
5.10. Search handler and dynamic dispatcher . 37
5.11. The db namespace search function . 37
5.12. The blast namespace search function . 37
5.13. BLAST search output processing . 38
5.14. API ring handler implementations . 38

v

Chapter 1

Introduction

The purpose of the project was to take a set of data collated by members of the Life and
Health Sciences department and to categorise and store it online in an accessible form
for other people to search. There are many existing databases categorising biological
information at the molecular level, but none for the isoelectric point (pI). The isoelectric
point is the acidity (pH) at which a molecule carries no net charge. Below the isoelectric
point, proteins have a net positive charge, above it a negative charge. In the denatured
state, the pI depends solely on a protein’s amino acid composition.

Professor Ian Nabney proposed the project and supervised development. Dr Darren
Flower of the Life and Health Sciences department acted as the principle owner of PIP-
DB, providing a copy for use in the website. Additionally, he was responsible for helping
to explain the required biochemistry theory, and acted as a potential user during design
feedback sessions. The two primary deliverables provided by Professor Nabney in the
project description were:

1. An updatable relational database warehousing the provided dataset.
2. A web-accessible GUI with searching and downloading functionality.

This meant that the aim of development would be to get a website hosted online on
a public server, accessible via a suitable web domain address. The website should offer a
service whereby users can search PIP-DB and download search results using a web browser.
This simple and open-ended specification allowed for the majority of development effort
to be focused upon innovating on the areas of database driven website development, and
search engine usability.

The primary reason for choosing the project was that there is a real existing need for
a product of this type within the molecular biology community, with potential value and
use for future scientific research. Development of database driven websites was an area
which I was unfamiliar with and had no prior experience in, but is a skill that I felt was
important to master.

This is an interdisciplinary project that involves aspects of web application develop-
ment, bioinformatics, data analysis, interaction design, and data mining. The project plan
used the OpenUP development process, which places an emphasis on the early mitigation
of risks. Two sets of milestones were defined to govern project development, covering
the requirements of the design and implementation aspects of the project. The design
milestones were given the labels D1 through D4 and the implementation milestones M1
through M3. Figure 1.1 shows the chronology of development.

1

CHAPTER 1. INTRODUCTION

Objectives
The following objectives were written dur-
ing before the planning stage of the project
in order to provide a very high level
overview of the finished product, and to ex-
press personal goals and expectations for
the project which can then be refined to pro-
duce specific and quantifiable requirements.

1. To build a free (as in freedom) web
application for searching and viewing
protein isoelectric points.

2. To produce a bioinformatics tool with
real world value for future scientific re-
search.

3. The application should provide intu-
itive but powerful searching facilities.

4. The application should provide a con-
venient means for a certified user to
edit and upload additional data.

5. The application should present infor-
mation in a usable and efficient form.

6. Users should be allowed to download
generated results for offline use.

7. Adequate security precautions should
be taken to minimise the risk of data
being sabotaged or stolen.

8. The implementation should use a
clean model view controller architec-
ture.

9. Comprehensive test coverage of the
API and common use cases should be
automated.

10. The application should be scalable for
much larger datasets.

Chapter ?? includes a description of the re-
quirements derived from these objectives,
and Chapter 6 evaluates the project with
reference to the objectives, offering a mea-
sure of achievement for each. See the
Overview section for a thorough description
of the document structure.

0
7

O
ct

o
b
er

 2
01

3
0
1

M
a
y
 2

01
4

N
o
v
em

b
er

 2
01

3
D

ec
em

b
er

 2
01

3
J
an

u
a
ry

 2
01

4
F

eb
ru

ar
y
 2

01
4

M
a
rc

h
 2

01
4

A
p
ri

l
2
01

4

0
1/

0
5/

2
01

4

D
4
 F

in
al

is
ed

1
7/

1
2/

2
01

3

D
1
 F

ir
st

it
er

a
ti

on

0
1/

0
5/

2
01

4

M
3
 F

in
al

is
ed

2
6/

0
1/

2
01

4

D
2
 S

ec
o
n
d
 i
te

ra
ti

o
n

2
2/

1
2/

2
01

3

M
1
 P

ro
to

ty
p
e

0
1/

1
1/

2
01

3

P
ro

je
ct

 p
la

n
d
ra

ft
23

/1
2/2

01
3
- 1

0/0
1/
201

4

P
ro

je
ct

 r
ew

ri
te

08
/0

4/
201

4
- 1

7/0
4/
201

4

U
sa

b
il
it

y
 t

es
ti
n
g

1
8/

1
0/

2
01

3

D
es

ig
n
 b

eg
an

0
3/

1
1/

2
01

3

Im
p
le

m
en

ta
ti

o
n

b
eg

a
n

0
2/

0
3/

2
01

4

M
2
 W

or
k
in

g
 s

y
st

em

0
2/

0
3/

2
01

4

D
3
 T

h
ir

d
 i

te
ra

ti
on

Figure 1.1: A timeline of project devel-
opment, showing significant major project
milestones.

2

CHAPTER 1. INTRODUCTION

Submission archive
The accompanying archive for this report contains a snapshot of the development repos-
itory. It was prepared automatically using the mksubmission.sh script written for this
purpose. While every effort has been made to include relevant source code listings in this
report, it is intended that a curious reader will investigate the contents of the archive of
their own accord, as the large size of the source code means that only a small proportion
can be reproduced in this report. Figure 1.2 identifies the key directories that may be
of interest to the reader. The diagram shows a directory tree, where each directory has
been annotated with numbers corresponding to the sections which discuss them within
this report. The UNIX path delimiter “/” is used throughout this text, with absolute
paths referring to the root directory of the archive.

This is a polylingual project including source code written in Clojure LISP, JavaScript,
Less CSS, M4sh, Make, Python, and sh programming languages. The documentation is
formatted in LATEX, HTML and Markdown. A reasonably competent text editor is all
that is required to view the source files, which can be identified by the file extensions: ac,
am, bib, clj, fsa, in, js, json, less, md, py, sh, tex, xml, yml.

Note that while the submitted archive contains all project source codes, the third
party BLAST+ binaries and compilers JAR have been removed in order to keep the size
of the submission archive down.

Archive directory
/

bin
build
Documentation

design
evaluation
midterm
plan
report

extern
resources

css
fonts
img
js

scripts
src
test
tools

csv2yaps
png
watchr
yaps2fsa

Sections in this document

4.1
4.1
3.1, 3.2
3.2
6.1
3.1, 5.2
5.1

5.5
4.1
4.1

5.5
4.3
5.3, 5.4, 5.5
4.2
4.3
5.4
4.2
4.1
5.4

Figure 1.2: Archive directory structure and report section cross-references.

3

CHAPTER 1. INTRODUCTION

Building the project

A complete copy of the project can be compiled on a GNU/Linux operating system by
executing the command ./bin/build --all from within the project root directory. This
will invoke a script that will attempt to automatically resolve system dependencies and
requirements. Failure to meet the system requirements will results in an informative error
message being displayed. See Section 4.1 for further information.

Nomenclature
Acronyms and initialisms will be used where appropriate in place of full terms. When one
is to be used, the first use of the term will include the full expanded name, followed by
the acronym in parenthesis. The acronym will then be used from thereon in.

On the project name

Throughout this text it is necessary to carefully distinguish conversation about the biolog-
ical dataset from the software and algorithms used to host it. To achieve this distinction,
I will use the initialism PIP-DB to refer to the biological dataset assembled by members
of the Life & Health Sciences department, and the name pip-db to refer to the soft-
ware project that I developed to host this. In order to keep this distinction clear, the
capitalisation will be kept consistent irrespective of the grammatical context.

On the use of UML

A subset of the Unified Modelling Language [1] is used a basis for many of the technical
diagrams. One notable deviation from convention is the use of sequence diagrams to
describe the behaviour of web services [2]. In such cases, the desired effect is to illustrate
the behaviour of a system at a high level, not to provide a technically accurate description
of communication.

Overview
The rest of the text is structured as follows: the project risk assessment is described
in Chapter 2, with a brief overview of the risks identified during the project planning
phase and a description of the mitigation strategies. A large body of text is then devoted
to a description of the design and implementation of the final product, and is divided
accordingly: information relevant to the development process and work flow is described
in Chapter 3; the development of infrastructure and tooling is described in Chapter 4;
and the product implementation in Chapter 5. Chapter 6 contains an evaluation of the
software and the results of usability testing, and the conclusions and recommendations
for further work can be found in Chapter 7. The appendices begin at page 48, followed by
the bibliography and references at page 59. The purpose of the Requirements and Process
chapters is to offer an insight into the development plan and workflow. A reader who is
solely interested in the implementation and engineering of the project may skip ahead to
Chapter 4.

4

Chapter 2

Risk Assessment

It is expected that 400 hours of work be put into a final year project. With such a large
body of time dedicated to it, it is important to establish a clear direction for development,
such that the project progress can be assessed at regular intervals along the project life
cycle. The aim of progress assessments is to ensure that time is not wasted on work
which does not positively contribute to the development of a finished product. In single-
developer projects there is an even greater priority for regular progress assessments than
in a large team project, as the single-developer is not accountable to anyone, leading to a
greater chance of the project losing focus or suffering from second-system effect [3].

To reduce the chance of this, a set of project risks were identified during the planning
stage (Table 2.1), and development was focused around the early mitigation of these risks.

For each risk, the probability of it occurring and the impact that it would have on
project progress was assigned a numerical value between 0-5, allowing the risks to ordered
in terms of severity using the geometric mean of these two values. High level risk mitiga-
tion strategies were constructed (Appendix A), and used as a starting point for creating
the project life cycle plan, discussed in Section 3.

Risk Description Category P I
R1 Design is not intuitive Design 2 3
R2 Project involves use of new technical skills Development 5 5
R3 High Level of technical complexity Development 5 3
R4 Complex deployment of production website Development 5 4
R5 Project milestones not clearly defined Planning 1 1
R6 System requirements not adequately identified Requirements 2 5
R7 Change in project requirements during development Requirements 1 5
R8 Changes in dataset format during development Resources 2 5
R9 Unable to obtain required resources Resources 1 1
R10 Users not committed to the project Users 2 4
R11 Lack of cooperation from users Users 1 4
R12 Users with negative attitudes toward the project Users 1 2

Table 2.1: Project risks. The P and I columns assign numerical values to the each risk’s
probability and impact respectively, within the range 0-5.

5

Chapter 3

Process

The following chapter describes the processes used in the design and implementation of
the project. Section 3.1 provides an explanation of the development process and the
approach to implementation, and Section 3.2 describes the user-centred aspects of the
design process.

3.1 Development process
A project with an individual developer requires a different approach to time management
than a multi-developer project. The lack of other team members means that the develop-
ment can afford to take a much more flexible and dynamic approach, allowing for a faster
pace and lower cost of change in the development life cycle. Agile software processes focus
on this fast pace of change by encouraging frequent communication with stakeholders and
very short development iterations [4, 5].

Elements of the Agile manifesto [6] inspired decisions in the project development. For
example, frequent meetings with Dr Flower were used to provide ongoing feedback of
development progress, and meets the agile requirement for customer collaboration over
contract negotiation. Additionally, the requirement for working software over compre-
hensive documentation was used to justify the early development of a working prototype
which users could interact with, instead of lengthy requirements notifications with po-
tential users before beginning development work. This resulted in useful design feedback
during early stages of the project development, as it is more intuitive for users to provide
feedback for a functional prototype then it is to discuss requirements in a more abstract
manner without being able to interact with a product.

Not all of the Agile software philosophy was strictly adhered to. In particular, the
emphasis on responding to change over following a plan was supplanted by the require-
ment for a formal project plan document to be created in the first term. Since the Agile
philosophy doesn’t provide a template or process for guiding development, so the itera-
tive OpenUP development process was used to provide a time management framework,
by dividing the development life cycle into discrete increments, each consisting of an in-
ception, elaboration, construction, and evaluation phase [7]. OpenUP was chosen for the
development process due to its entirely open source nature as part of the Eclipse Pro-
cess Framework, and because it targets small teams and agile development by design [8].
Development was split over three iterations, with one covering the first term, and two in
the second term. The end of each iteration’s evaluation phase culminated in a design and
implementation milestone pair.

6

CHAPTER 3. PROCESS 3.1. DEVELOPMENT PROCESS

3.1.1 Version Control
The git version control system was used to provide version control. A single monolithic
git repository tracks revisions for all pip-db source codes and associated data. By using
version control from the very project’s inception, a fully accountable and transparent his-
tory of development has been recorded, with 2,420 revisions committed since 14 October
2013.

Git was chosen as the version control system due to its support for lightweight branch-
ing and distributed-by-design nature [9]. While the benefits of distributed version control
are not entirely exploited for single-developer projects, the support for concurrent devel-
opment of branches encourages experimentation and an agile approach to development.

3.1.2 Open Source
One of the key considerations of the project objectives (Chapter 1) was that the finished
project should be freely available without commercial interest, and this extends to the
source code and development process. The success of truly open models of development
have been investigated in great detail [10–13], and a philosophy of “release early, release
often” has been encouraged in open source communities as a technique for nurturing rapid
and widespread user involvement from an early stage [14]. As a result, all of the program
code, documentation and supporting files that have been created for pip-db have been
released under the terms of the GNU General Public License v3. This is an open and
permissive license that allows for commercial use, but it mandates that derivative works
maintain the same license and must distribute the source code openly [15].

The combination of an open source license and the use of git version control meant that
online repository hosting could be used to provide a public centre for development. For
this, the GitHub website was used, which is the most popular online repository hosting
site [16], and offers free hosting for open source projects [17].

Figure 3.1: Screenshot of the GitHub repository for pip-db.

7

CHAPTER 3. PROCESS 3.1. DEVELOPMENT PROCESS

A note on dataset confidentiality

It is important to note that while pip-db is an open source project, the PIP-DB dataset
as supplied by Dr Flower remains confidential at his request, and so has not been released
for distribution.

3.1.3 Development workflow
In addition to hosting the project source code and revision history, GitHub provides many
useful features intended for collaborative development efforts, including an issue tracker,
milestones, and a Wiki. By combining these features with strict version control practises,
it is possible to create a dynamic development environment which simultaneously encour-
ages experimentation and rapid change while providing a full history of revisions and the
ability to roll back and integrate new features when required.

The issue tracker provided by GitHub was used from the project inception. The
purpose of the issue tracker is to document requests for changes. Whilst the revision
control log provides a history of all of the changes which have been made, the issue
tracker is used as a place to document changes which should be made, but not have not
yet been completed. Each issue is assigned a unique identifier, and these identifiers can be
used in revision messages to provide a cross reference between the revision control history
and the known issues and bugs. In total, 350 issues have been opened, of which 39 remain
open at the time of writing.

Issues can be categorised using labels (Table 3.1). Labels provide additional meta data
regarding a type of issue, and each issue can be assigned multiple labels. The issue tracker
can filter issues by labels, allowing for a quick visual overview of the issues particular types.

Figure 3.2: Screenshot of GitHub’s issue tracker for pip-db.

8

CHAPTER 3. PROCESS 3.1. DEVELOPMENT PROCESS

Label Description
Bug Crash reports, stack traces, and software failures.
Design Issues relating to the user interface design.
Documentation Documentation tasks.
Feature Web service feature addition requests.
Implementation Issues relating to the web server implementation.
Task Feature addition requests.
Testing & tooling Issues relating to infrastructure.
Build system Bugs and issues with the build system.
Planning Issues relating to TP1 project planning.
Regression Issues which have arisen as a result of changes, not additions.
Version control Git and GitHub issues and feature requests.
Wontfix Used to indicate issues which have been closed without being fixed.

Table 3.1: The labels used for categorising issues, and their corresponding meanings.

In addition to assigning labels to issues, GitHub also supports the creation of mile-
stones with set dates. Issues can be assigned to milestones, and the number of open and
closed issues per milestone can be shown, providing an indication of the progress towards
a particular milestones (Figure 3.3).

Figure 3.3: Screenshot of GitHub’s milestones overview for pip-db.

3.1.4 Branching model
A branching model was designed for this project in order to provide a consistent branching
and release strategy to use over the course of development. Since the revision control
must track a huge number of changes (over 2000) over the course of several months,
it is important that the revision history be as clear as possible, and that branches are
used intelligently to provide additional information about the project development, not
to obscure past work.

The branch model that I designed was inspired by Driessen’s Successful Git branching
model [18], with a number of changes to adapt it specifically for this project. The core of
Driessen’s model is two permanent branches which track the current development head,
and the latest stable release. Developers work on the development branch, and update
the stable branch at release time. Transient auxiliary branches are used as staging areas

9

CHAPTER 3. PROCESS 3.1. DEVELOPMENT PROCESS

for new features and releases. The hotfix branch support was removed from Driesson’s
model, since the software developed is only proof and concept and so does not need to
support regression patching.

Driesson Cummins Purpose
master stable The latest stable release.
develop master The current development head.
release/:name release/:version Release candidate staging areas.

feature/:name wip/:id Feature addition branches (cross referenced
with issue tracker using issue IDs).

hotfix/:name Hotfix development branches.

Table 3.2: A comparison of branch names with Driesson’s development model.

Importantly, the name scheme for feature branches was changed so that it matched the
GitHub issue IDs. This meant that work on a feature should only begin when it has an
open issue assigned to it, enforcing the use of the issue tracker. This novel integration of
issue tracker and version control system means that for every change made in the project,
it is possible to trace back not only the revision which introduced the change, but also
the issue or feature request which demanded it. This means that every change is justified
with a reason why the change was made, not just the description of how the change was
made which is provided by the revision history.

3.1.5 Auxiliary documentation
To ensure a consistent use of version control, a checklist was created for each common ac-
tivity (submitting a patch, creating a release, starting work on a new feature). Additional
files document the high-level workflow and approach to release management. Relevant
documentation in the submission archive includes:

Documentation/ReleaseChecklist.html
Documentation/SubmitChecklist.html
Documentation/SubmittingPatches.html
Documentation/Workflow.html
Documentation/VersionNumbering.html

An engineer’s log was used to keep daily notes of all development activity, minutes from
stakeholder meetings, and other tertiary information that is missing from the revision his-
tory and issue tracker. A HTML render of the log can be found in the submission archive
Documentation/Log.html. The project log was written in Markdown format for quick
typesetting, and used a consistent date format to separate individual entries which meant
it was possible to parse the log using a simple Python script (scripts/parselog.py) for
export into different formats and analysis (Table 3.3).

Number of log entries 127
Total word count 21,329

Average entry word count 167
Shortest entry word count 6
Longest entry word count 2,008

Table 3.3: Project log details.

10

CHAPTER 3. PROCESS 3.2. DESIGN PROCESS

3.2 Design process
The complement of the development processes are the design processes, which dictate
the approach to user interface design. Both the project objectives and risk mitigation
strategies emphasise the importance of creating an intuitive user interface for the search
engine, making the decisions in design processes important to the success of the project.

3.2.1 Human-centred design
The software industry is undoing a renaissance in its attitude towards usability. In the post
text-interface age, the graphical user interface has become the focus of many interesting
shifts in design methodology. Human-centred design is a school of interaction design
which edifies usability as the primary goal of all design [19], and encourages designers to
take a measured approach to interaction design, since “the joy of an early release lasts
but a short time. The bitterness of an unusable system lasts for years”.

Uptake of human-centred design principles has been slower in the field of bioinformat-
ics, which may be due to the common belief that usability is only of secondary importance
to functionality, instead of being a core component of it. The disadvantage of this is that
a number of popular existing bioinformatics tools have relatively poor usability, although
there is evidence of attempts at innovation in some of the more popular tools [20, 21].
There have been efforts made to introduce human-centred design into bioinformatics, with
studies showing that “although users believe that the bioinformatics community is pro-
viding accurate and valuable data, they often find the interfaces to these resources tricky
to use and navigate” [22]. The importance of good usability as a time saving mechanism
has been justified as “usability ‘barriers’ can pose significant obstacles to a satisfactory
user experience and force researchers to spend unnecessary time and effort to complete
their tasks” [23].

Over the course of the project development, a significant emphasis was placed on taking
a human-centred approach design, not only because of the time saving benefits of a well
designed tool, but also as a necessary coping mechanism for the difference in usability
expectations between the computer science and biochemistry communities. Further risk
mitigation is provided by extensive analysis of existing bioinformatics tools in the project
planning stage1.

3.2.2 Prototype development
Rapid prototyping played a key role in being able to achieve the goal of human-centred
design, allowing for immediate and visual feedback from stakeholders and potential users.
The project used two types of prototyping: low fidelity and high fidelity.

Low fidelity prototyping

Low fidelity prototyping involves the rapid generation of non-functional “paper proto-
types” which are designed to give a rough impression of how the finished product will
look, without specifying an implementation design. Low fidelity prototyping was achieved
in this project using the Balsamiq2 program to generate mockups and wireframes of the

1See the project plan for a critical analysis of existing bioinformatics search engines. A copy of the
project plan can be found in the submission archive Documentation/ProjectPlan.pdf.

2Balsamiq. Rapid, effective and fun wireframing software. http://balsamiq.com/

11

http://balsamiq.com/

CHAPTER 3. PROCESS 3.2. DESIGN PROCESS

pages of the website (Figure 3.4). These mockups were discussed with Dr Flower to verify
that they were broadly satisfactory, and then used as the basis for the M1 implementa-
tion. After the M1 implementation was complete, the mockups were updated and refined
for the second D2 design milestone (Figure 3.5).

Figure 3.4: D1 design mockups for site pages.

Figure 3.5: D2 design mockups for site pages.

12

CHAPTER 3. PROCESS 3.2. DESIGN PROCESS

In addition to providing a guideline for the page aesthetics, the mockups were used to
give a rough outline of the interaction design. A list of common tasks was created and
for each, a sequence of mockups was generated which show the steps that the user would
have to take to achieve them. Figure 3.6 shows the interaction design for a simple name
search using the D1 design. Successive design iterations refined these interaction designs
further, and covered a wider variety of use cases, such as exception handling and error
cases.

Figure 3.6: D1 interaction design for a simple use case.

High fidelity prototyping

In contrast to low fidelity prototypes, the purpose of a high fidelity prototype is to provide
a way for potential users and stakeholders to interact with a tangible simulation of the
final product [24]. This depth first prototyping requires a more technical approach which
maps the high level design ideas of the low fidelity prototype to a functional back-end to
provide dynamic behaviour.

In order to mitigate the risk of creating a tool which is not intuitive, an initial prototype
implementation was required for the M1 milestone, at the end of the first term. This meant
that the second term development could be focused upon refined and innovation of the
user interface. There was a tight time schedule for development of this first prototype,
so an opportunistic approach to programming was adopted, making maximum use of
existing tools and supporting software where available [25]. The implementation of the
M1 prototype is discussed in Section 5.1. See Appendix B for a comparison of the D1 low
fidelity mockups with the M1 prototype implementation.

13

Chapter 4

Infrastructure

The purpose of infrastructure is to develop a set of tools to assist in the creation of a
product by automating specific sets of actions or behaviour. In software projects, these
tools broadly fall into one of three categories: build automation, testing automation, and
task automation. In all cases, their primary purposes is to save developer time and reduce
the risk of human error by automating repeatable tasks. The development of tooling was
assigned a high priority throughout the project due to its mitigating effects on the risks
of technical complexity and deployment complexity. Additionally, it is often possible to
repurpose tools for multiple projects, which helps satisfy the project objective of producing
something of real world value for future work.

4.1 Build automation
The building and compilation stage of pip-db requires the execution of many steps, the
most notable of which are:

• Clojure compilation The web server is written in Clojure LISP, which is a com-
piled language that translate to Java bytecode for execution on the Java Virtual
Machine (see Section 5.2).

• JavaScript minification Client-side scripts are pre-processed using a minifier,
which is program that reduces the size of a source code by removing all unnecessary
characters, and further reduces the size of the source code through semantic evalua-
tion of the code in order to produce shorter variable names and generate compacted
source code. The purpose of generating a compacted file is to reduce the bandwidth
required to transmit it to the client, resulting in faster page loading times.

• Stylesheet pre-processing Client-side stylesheets are written in Less CSS, which
is a language which compiles to CSS and offers extensions to the CSS specifica-
tion, such as variables and control flow. Additionally, compiled CSS stylesheets are
minified to reduce their size.

• Documentation rendering User documentation is compiled from intermediate
forms (LATEX, Markdown) into publishable formats (pdf, HTML).

• Binary installation Executable scripts and applications and must be installed into
a appropriate directory in the system path, for example /usr/local/bin.

14

CHAPTER 4. INFRASTRUCTURE 4.1. BUILD AUTOMATION

4.1.1 Build system
In order to avoid having to manually execute every step of compilation by hand, a build
system is used to automate the process. This project uses the GNU Build System1

(also known as Autotools) for the unorthodox purpose of compiling website resources
and source code. Autotools is a component of the GNU toolchain that was designed for
creating portable Makefiles by offering three levels of increasing abstraction for the build
system:

1. autoconf The autoconf tool generates a configure script by scanning the build
environment and generating scripts from input sources.

2. configure The configure script is responsible for detecting platform-specific vari-
ables and configuring the build, allowing for user configurations. Makefiles are
generated at the end of configuration.

3. make Invoking the make program will build the project using the Makefiles, which
contain a set of targets for performing tasks such as compilation, deletion of gener-
ated files, and exporting releases.

In addition to automating each of the compilation tasks mentioned above, the auto-
tooled build system offers the following additional behaviours:

• Cross-platform compatibility Differences between platform-specific implemen-
tation details are handled by using the substitution of generics. This means that
the build system will adapt to different environments and configurations.

• Dependency resolutionA dependency tree models the relation of compiled sources,
so that compilation can be ordered correctly to satisfy any dependencies. Addition-
ally, third party packages are downloaded and installed as required.

• User configurations Run time flags for the configure script allow for partial com-
pilation, enabling and disabling features, and setting the optimisation level for com-
pilation.

Figure 4.1 shows how the build system prepares the HTML, CSS, and JS source files at
build time. Autotools was designed for creating portable Makefiles for C software packages
on UNIX systems. The application of Autotools for building websites is unusual, but the
fine grained control and abstraction that is provided allows for a powerful and adaptive
build system, with unique advantages over existing systems. Two such advantages are
the ability to perform checksum based cache busting, and shell-level parallelisation of the
build process.

1automake http://www.gnu.org/software/automake/manual/automake.html

15

http://www.gnu.org/software/automake/manual/automake.html

CHAPTER 4. INFRASTRUCTURE 4.1. BUILD AUTOMATION

START

More
HTML
targets?

Get next
HTML
target

Source
modified?

Compile
HTML

Update
timestamp

YES

YES

NO

More CSS
targets?

Get next
CSS target

Source
modified?

HTML
modified?

Compile
CSS

Update
timestamp

Update
HTML

references

NO

YES

YES

NO

NO

YES

More JS
targets?

Get next
JS target

Source
modified?

HTML
modified?

Compile
JS

Update
timestamp

Update
HTML

references

FINISH

NO

YES

YES

NO

NO

YES

Figure 4.1: Flowchart of build system HTML, CSS, and JS subsystem.

Checksum based cache invalidation

When a web server transmits a file to a client, it is possible to indicate in the HTTP
response headers that the client should cache a copy of the file for future use. That way,
future attempts to retrieve the file allow the client browser to simply retrieve the local
copy from the cache, removing the need for a HTTP round trip. This greatly reduces the
load time on repeat requests for the same file, and so is commonly used for caching assets
that are common to every page on a website, such as images, stylesheets, and scripts. The
disadvantage of enabling this kind of caching is that if the contents of the file is modified
after it has been cached by a client, then future requests for that file will retrieve the out of
date cached copy. To prevent this, it is necessary to adopt a cache invalidation technique
to ensure that files are not retrieved from the cache when they have been modified on the
server.

One technique for invalidating cached files on modification is to use a cache naming
scheme [26]. This means that assets are given version numbers, and those version num-
bers are incremented every time a modification is made. For example, if a HTML page
included a script main.js, the file would be given the name main-v1.js, that would
be cached by the client. If main.js was modified, it would be renamed to main-v2.js,
and all references to it would be updated to reflect this new name. At this point, the
main-v1.js file would remain in the client’s cache, but the HTML page would now point
to main-v2.js, causing the client to fetch this new modified file. This process can be
repeated indefinitely, so long as unique file names are always assigned.

This technique for file name cache invalidation (known as cache busting) is easy to
incorporate into a build system. Every time the build system executes, it increments the
version counters for each file, and updates any references to that file to point to the new
version. However, this causes unnecessary duplication of files, since there is no means for
detecting whether a file has actually been modified when blindly increasing the version
number.

16

CHAPTER 4. INFRASTRUCTURE 4.1. BUILD AUTOMATION

1 def compi l e_javascr ipt_source (f i l e) :
2 i f content_hashing = enabled :
3 checksum = md5sum(f i l e)
4 target_name = basename (f i l e) + subs t r i ng (checksum , 8) + ' . j s '
5 else :
6 target_name = f i l ename (f i l e)
7
8 i f not f i l e _ e x i s t s (t a r g e t) :
9 i f min i fy_javasc r ip t = enabled :

10 t a r g e t = mini fy (f i l e)
11 else :
12 t a r g e t = copy (f i l e)
13
14 i f content_hashing = enabled :
15 for h in html_source_l i s t :
16 r ep l a c e r e f e r e n c e s to ' f i l e ' with ' t a r g e t ␣ in ␣h

Listing 4.1: Pseudocode listing for compiling a JavaScript source, with optional content
hashing and minification.

The pip-db build system uses a more pragmatic approach, whereby for each file, its
checksum is computed using the md5sum algorithm. A concatenated version of this check-
sum is then appended to the filename, and references to the file are updated to point to
this new file name, incorporating the checksum. The benefit of calculating file checksums
instead of using incrementing version numbers is that the checksum is dependent on a
file’s contents, and so will only change when the file has been modified. This succinctly
solves the problem of cache invalidation only on file modifications, as unmodified files
will have unchanged checksums. See Listing 4.1 for a pseudocode implementation of this
cache busting algorithm.

Build system parallelisation

Autotools uses a recursive build system in which each directory is visited in turn, and
all of the required compilation steps are executed before leaving and moving on to the
next directory. This works well for the common use case of C programs, in which it
may be necessary to generate all object files before invoking a linker. However, for the
purposes of pip-db, this causes needless serialisation of the build system since there are
very few dependencies between different files. For example, the compiled web server does
not depend on the stylesheets, which in turn do not depend on the client side scripts.
Despite this, each item is compiled sequentially, with the build system only beginning on
the next item once the previous item has completed.

By considering the build process as a loop in which each iteration causes a new file
to be compiled, it is evident that the loop could be successfully parallelised such that
each iteration is assigned a separate thread, providing that there are no data dependen-
cies between successive iterations. Using this technique, several successive parallelisation
optimisations were made to the build system so that as much of the compilation work is
performed in parallel as possible.

An experimental environment was set up on a development machine in which compila-
tion was performed and timed 5 times, before applying a parallelisation optimisation and
repeating the experiment. Figure 4.2 shows the results of the experiment. In each case,
the optimisation was implemented by spawning the compilation task in a forked subshell,
as opposed to executing the compilation process from the main build thread. The first test

17

CHAPTER 4. INFRASTRUCTURE 4.1. BUILD AUTOMATION

performed was to time the serial build system, which executed in an average time of 39
seconds. The subsequent optimisation passes parallelised the following tasks: JavaScript
minification, API documentation generation, CSS minification, image compression, Less
CSS pre-processing, and tools compilation.

As can be seen, the greatest reductions in times were achieved by parallelising the CPU
intensive JavaScript minification and API documentation generation. Compilation tasks
which are not CPU bound such as image compression achieved a much lower reduction in
compilation time through parallelisation, and in fact generated a very slight increase in
the execution time. This is due to the cost of spawning a new subshell which is incurred by
using shell-level parallelisation techniques. The build system parallelisation optimisations
reduced execution time by a factor of 5. Further execution time reductions could be
achieved by parallelising the recursive directory traversal of Autotools, but this would
require significant alterations to the core automake package which are beyond the scope
of this project.

U
nm

od
ifi
ed

Ja
va
Sc
rip

t

D
oc
um

en
ta
tio

n

C
SS

Im
ag
es

Le
ss

C
SS

To
ol
s

10

20

30

40

Ex
ec
ut
io
n
tim

e
(s
ec
on

ds
)

Build system parallelisation

Figure 4.2: Graph of build system execution times after each optimisation iteration.
Each value is sequential, with the leftmost control value being the execution time of
the unmodified serial build system. The tests were invoked with the command time
(./autogen.sh && ./configure && make).

18

CHAPTER 4. INFRASTRUCTURE 4.2. TEST AUTOMATION

4.1.2 On-demand compilation using inotify subsystem
A common desire amongst software engineers is to reduce the feedback loop when pro-
gramming between making a modification to a source file, recompiling the sources, and
executing the compiled program. The Autotooled build system described above provided
a means for performing automated compilation of the project sources, but it must be
manually invoked by the user, and it does not run any programs once completed. In
order to reduce the feedback cycle for pip-db, a script was written which utilises the real
time event notifications provided by the Linux inotify subsystem [27, 28], in order to in-
voke the build system whenever a dependent source file is modified. In addition, it also
performs heuristic analysis to determine which parts of the project need to be rebuilt, and
will execute a development server after rebuilding. This greatly tightens the programmer
feedback cycle, as the developer need only save a modified file in order for the build system
to recompile the required sources and launch a new server with the changes in place, in
real time.

4.1.3 Homogeneous deployment and development
One of the project risks identified in the planning stage was the risk of complex deployment
of the compiled website. This is a common problem with web development projects, where
it is necessary to take a program developed on a local machine and transfer it to run on
a server which often has a wildly different environment and hardware. Mitigation of this
risk was achieved by combining the use of the Autotooled build system with the use of
Heroku to host the website. Heroku2 is a company which offers a hosting service whereby
a repository can be uploaded and an arbitrary script executed. This means that a build
script can be executed after uploading in order to compile all of the web sources on the
server side, ensuring that differences in the environment can be compensated for by the
build system. This simultaneously mitigates one of the key project risks, while providing a
homogeneous build system which offers full control of the configuration of the deployment
server and local development servers.

4.2 Test automation
A stated goal of the project objectives is that there should be adequate automated test
coverage of any APIs. This is achieved by using a combination of unit tests of individ-
ual software components and black box testing of the entire web server using controlled
datasets.

4.2.1 png: Generation of test data
The generation of test data is achieved using a novel application of Markov chains for the
purpose of creating plausible data from existing datasets. A Markov chain is a system
used in statistical modelling of stochastic processes, in which the transitions between
each state of a process are modelled as a function of their probability [29]. When applied
to a body of text, a set of Markov chains can model the probability that a given word
may follow a preceding word. Listing 4.2 shows a JavaScript implementation of this text

2Heroku | Cloud Application Platform https://www.heroku.com/

19

https://www.heroku.com/

CHAPTER 4. INFRASTRUCTURE 4.2. TEST AUTOMATION

parsing, building up an array of Markov chains (wordTrees), as well as recording each
start and end word for sentences.

1 f o r (var i = 0 ; i < l i s t . l ength ; i++) {
2 var sentence = l i s t [i] . s p l i t (' ␣ ') ; // Split l ine into words
3
4 s tar twords . push (sentence [0]) ; // Record f i r s t word
5 t e rmina l s . push (sentence [s entence . l ength − 1]) ; // Record last word
6
7 f o r (var j = 0 ; j < sentence . l ength − 1 ; j++) {
8 var cur rent = sentence [j] , next = sentence [j + 1] ;
9

10 i f (wordTrees [cur rent] === undef ined)
11 wordTrees [cur rent] = [next] ; // Create a word tree
12 else
13 wordTrees [cur rent] . push (next) ; // Add word to tree
14 }
15 }

Listing 4.2: Markov chain implementation in JavaScript.

By picking a random starting word from the set of states, it is possible to generate
a syntactically correct sentence by traversing the states by picking a random transition
from one state to the next, based on the probability of it occurring in the training set.
See Listing 4.3 for a JavaScript implementation of a Markov text generator. This method
of text generation has applications where a seemingly plausible body of text must be
generated from an input text, and has been used largely only for novelty purposes or for
the generation of spam. The Plausible Nonsense Generator (png) is a tool which uses a
Markov text generator to parse an input CSV training input, and generates a CSV of the
same format with psuedo-random values for individual fields.

The Plausible Nonsense Generator proved extremely valuable for the purposes of black-
box systems testing, where it was possible to generate test datasets by training with PIP-
DB. This provided useful test data while mitigating the risk of exposing the confidential
PIP-DB data inadvertently.

1 var next = function () {
2 var word = rand (s tar twords) ; // Pick a random starting word
3 var sentence = [word] ; // Create a sentence array
4
5 whi le (wordTrees [word] !== undef ined) {
6 var nextWords = wordTrees [word] ;
7
8 word = rand (nextWords) ;
9 sentence . push (word) ;

10
11 i f (t e rmina l s [word] !== undef ined)
12 break ;
13 }
14
15 return sentence . j o i n (' ␣ ') ;
16 } ;

Listing 4.3: Markov text generator implementation.

20

CHAPTER 4. INFRASTRUCTURE 4.2. TEST AUTOMATION

4.2.2 Test coverage using branch analysis
Unit tests are used to provide fine grained testing of individual software components. The
purpose of these tests are to ensure correctness of code and algorithms, and operate at
a lower level than whole system black box testing. Several criteria have been proposed
for assessing the adequacy of unit tests, including an analysis of the coverages of code
branches. For a given unit, the percentage of control transfers which are tested can be
used as a metric to indicate how thorough the testing is [30]. If every possible branch in
a unit’s program flow is tested, then it is said to have 100% test coverage.

In practice, achieving 100% branch coverage with unit tests becomes increasingly
impractical with software of significant complexity. Nested conditional logic results in
an infinite set of unique paths through a program, requiring a structured approach to
determine which paths to prioritise in testing and which can be ignored [31]. In pip-db,
the Clojure testing framework is used to write unit tests, and the third party library
Cloverage3 is used to perform automatic branch analysis of the source code. Figure 4.3
shows the generated report for a given source file. The output is colour coded for each
line of source input such that green shows total test coverage, yellow indicates partial
coverage and red represents untested logic. These visual indicators of test coverage allow
for a quick review of test adequacy, and ensure that testing efforts can be focused on
critical code sections, thus achieving the project objective of providing comprehensive
automated test coverage of the API.

Figure 4.3: Screenshot of test coverage report.

3Cloverage https://github.com/lshift/cloverage.

21

https://github.com/lshift/cloverage

CHAPTER 4. INFRASTRUCTURE 4.3. TASK AUTOMATION

4.2.3 Continuous integration
The usefulness of testing can only be asserted if tests are executed regularly during devel-
opment. This is the basic tenant of the Test Driven Development process, which mandates
that development occur in very small cycles of continuously writing new tests concurrently
with the main development effort [32]. One such technique for encouraging test driven de-
velopment is the concept of continuous integration, in which the a cycle of development
is accompanied by continuous integration of new features into the main build, in order
to enable early regression catching [33, 34]. In pip-db, continuous integration testing is
provided by Travis CI4, a service which uses a similar process to Heroku as described in
Section 4.1.3, automatically executing the full test suite whenever a new revision is made.

The execution of tests occurs when a revision is published, and is performed asyn-
chronously on a dedicated test server, which performs the tests and reports back whether
the tests passed or failed. This way, it is possible to be continuously developing on the
main project whilst ensuring that tests are never missed. This reduces the risk of human
error causing a regression to enter into the main development branch unnoticed, as well
as reducing the development cycle by performing testing asynchronously on dedicated
hardware.

4.3 Task automation
The third category of infrastructure tooling is task automation. Task automation tools
fulfil the self evident role of automating a sequence of actions which would otherwise have
to be performed manually by the developer. The value of a task automation tool can
be assessed based on the frequency with which the task needs to be performed, and the
amount of time saved by automating it. Two examples of task automation tools which
have been written for pip-db are a dataset analysis tool and a repository manager.

4.3.1 dsa: Dataset analysis
It is important to analyse the contents of PIP-DB in order to best understand how it
should be stored and interacted with, but a manual analysis of the dataset would taken
hundreds of man hours due to its large size. Additionally, we would need to repeat this
analysis if the dataset were to be modified. In order to mitigate the risk of a change in
the dataset during development, a dataset analysis tool (dsa) was written which would
perform automated statistical analysis of the dataset. The dsa tool parses an input
dataset and produces a machine parsable output file containing meta data about the
dataset, including such properties as the percentages of unique values for each column,
a list of the most frequent values, the mean, range and mode of numerical values, and
a number of other properties which prove influential in the design of the data back-end.
Figure 4.4 shows a graph of one of the properties which it analyses.

The dsa tool proved valuable in the early design stages of the web server, where a broad
understanding of the dataset contents led to justified design decisions in the back-end,
with real data to support design decisions. It also proved useful during the development
of the Plausible Nonsense Generator (Section 4.2.1), where it could be used to verify that
the contents of generated datasets has similar properties to PIP-DB. This reduced the
time required to prepare tests significantly.

4Travis CI https://travis-ci.org/.

22

https://travis-ci.org/

CHAPTER 4. INFRASTRUCTURE 4.3. TASK AUTOMATION

EC
Pr

ot
ei
n

A
lte

rn
at
iv
e
na

m
e(
s)

So
ur
ce

Lo
ca
ct
io
n

M
.W

Su
bu

ni
t
N
o.

Su
bu

ni
t
M
.W

.
N
o.

of
Is
o-
en
zy
m
es

pI
m
ax

im
um

va
lu
e

pI
m
in

pI
m
ax

pI
of

m
aj
or

co
m
po

ne
nt pI

Te
m
pe

ra
tu
re

M
et
ho

d
Pr

ot
ei
n
se
qu

en
ce

Sp
ec
ie
s
Ta

xo
no

m
y

Fu
ll
te
xt

A
bs
tr
ac
t
on

ly
Pu

bm
ed

N
ot
es

0

0.2

0.4

0.6

0.8

1
Ratio of populated fields in dataset

Figure 4.4: The proportion of populated keys for each field in PIP-DB.

4.3.2 pipbot: Repository management
The development of pipbot marks an intentional departure from the UNIX philosophy
of creating small, single purpose programs [35], and instead attempts to create an all-
encompassing tool for managing the day to day activities of repository management and
maintenance. With the sole aim of automating many of the more mundane development
tasks, pipbot can be invoked as either an interactive shell or a batch mode program, and
has functionality for:

• Build and deployment Pipbot is capable of invoking the build system for local
development, as well as deploying public builds to the remote web server. It can
additionally generate reports of the current local and remote build configurations.

• Generating burndowns Pipbot can generate reports of the development activity
over a given timespan, and since the last public release. This is useful for giving a
quick high level overview of recent development efforts.

• Issue tracking Pipbot interacts with the public GitHub API in order to be able to
list, show, open and close issues. This removes the need to context switch between
a programming editor and a web browser during development.

• Branching Pipbot has an implementation of the branching model (Section 3.1.4)
that allows for the creation and completion of feature branches. This enforces a
consistent version control policy, making the revision history more uniform and
informative.

• Release preparation Pipbot can create release branches and tags.

23

CHAPTER 4. INFRASTRUCTURE 4.3. TASK AUTOMATION

Implemented as a monolithic Python script, the pipbot tool was responsible for the
huge time savings throughout the course of the project through full automation of the
most common development tasks. Figure 4.5 shows an example pipbot session.

$ pipbot
Hello there. My name is pipbot.
-> burndown 7 days
Comparing ‘master’ against ‘master’...

There are 56 new commits on master
The last commit on master was 5 days, 2 hours ago

-> version
0.6.2
-> start 0.6.3
Summary of actions:
- A new branch release/0.6.3 was created, based on master.
- A new remote branch release/0.6.3 was created on origin.
- Branch release/0.6.3 tracks remote branch release/0.6.3 from origin.
- You are now on branch release/0.6.3.
- The version number has been bumped to 0.6.3 and committed

Now, start performing release fixes. When done, use:

pipbot finish 0.6.3

-> exit
Goodbye!

Figure 4.5: An example pipbot interactive session, in which the user begins a new
release. User issued commands begin with the prefix “-> ”. First, the user requests a
burndown of the repository activity over the past week; then they request the current
version, and begin a new release with the version number 0.6.3.

24

Chapter 5

Product

This chapter describes the implementation of the pip-db web application, including the
web server, database back-end, and client side logic. The chapter begins with a description
of the prototype implementation in order to provide context and justification for the
decisions made in the final product.

5.1 Implementation of the prototype
The M1 implementation milestone culminated in the development of functional prototype,
as detailed in Section 3.2.2. The purpose of the prototype was that it should offer an
interactive demonstration of the final product behaviour that can be tested by potential
users. As such, the primary requirement for any technology used is that it should enable
the rapid prototyping of an interactive website. For this reason, the decision was made
to complete the prototype implementation using the mature and stable LAMP 1 stack.
Using LAMP, I was able to quickly develop a functioning website, built on top of a
number of established and tested software packages. The pip-db prototype was developed
by balancing the traits of opportunistic programming, which emphasises “speed and ease
of development over robustness and maintainability of code” [25], with the needs for a
solid and robust technical back-end.

The first task required for implementing the prototype was to produce a very simple
schema to support storing PIP-DB in a set of MySQL tables. As this was an early
prototype, support for dataset modifications and uploading of data were not added, so
the MySQL import was handled solely from the command line. A set of PHP scripts
were then written which would interact with the MySQL server and render web pages
dynamically. Searching was performed through simple SQL select statements.

Despite the emphasis of speed over correctness during development, several efforts
were made to engineer a quality implementation rather than simply a rushed one. PHP
is a language that is notorious for encouraging bad programming practises through im-
proper use and a number of caveats [36], and steps were taken to actively reduce the
risk of creating spaghetti code. A clear Model View Controller architecture was used to
separate application logic from back-end communications and front-end rendering, and
a templating engine was used to separate HTML presentation code from program logic.
Access to global super-variables was restricted through the use of a single static API, and
classes were used to subdivide program components.

1LAMP: Linux, Apache, MySQL and PHP

25

CHAPTER 5. PRODUCT 5.2. PROGRAMMING LANGUAGE SELECTION

5.2 Programming language selection
The amount of effort required to circumvent the faults of the PHP programming language
resulted in a lot of wasted effort during the implementation of prototype, as well as leaving
an unsatisfied feeling that I was having to work against the language, not with it. The
decision was made to reimplement the project using a stronger programming language
for the subsequent implementation iterations, and a selection of alternative languages
were picked as candidates for evaluation. Table 5.1 shows a comparison of the three
strongest candidate languages, selected after a period of broad research into popular web
technologies.

Year Purpose Programming style and
paradigms

PHP 1995 Server-side web scripting
Object orientated, imperative,
dynamically typed with implicit
typing, reflective.

Python 1991 General purpose scripting Object orientated, imperative,
dynamically typed.

JavaScript 1995 Client-side web scripting Prototype based, imperative,
functional, dynamically typed.

Clojure 2007 General purpose compiled
Functional, recursive,
concurrent, dynamically typed
with optional explicit typing.

Table 5.1: A comparison of server-side programming languages.

Each language was evaluated with respect to a set of key desirable features:

1. Brevity Code written in the language should be concise and contain minimal boil-
erplate. PHP requires numerous caveat workarounds which pads out the size of
source codes.

2. Encourage reuse The language should encourage reuse as a core part of its design.
In PHP, the programmer must take extra effort to reduce the risk of namespace
collisions and modified global state when sharing code.

3. Architecturally sound The language should have a clearly structured approach
to web programming. PHP encourages scripting with global state and the intermin-
gling of application and presentation logic, with any attempts to introduce compo-
sition requiring extra effort and diligence from the programmer.

4. Expressive The most subjective of the requirements, the programming language
should allow for the relatively direct translation of ideas into functioning code,
without the need to work around perceived limitations of the language.

Of the programming languages considered, Clojure was chosen as the most suitable.
In addition to satisfying all of the selection criteria, the language offered the additional
benefits of being incredibly fast as a result of it being a compiled language which executes
on the JVM, and with simple support for concurrency due to the rejection of imperative
programming in favour of immutable data structures and a transactional memory model
[37, 38]. Another benefit is that as a young programming language, it has a dynamic

26

CHAPTER 5. PRODUCT 5.2. PROGRAMMING LANGUAGE SELECTION

and fast paced development community, allowing for greater possibilities to contribute
to existing projects. By far the most significant advantage of Clojure over PHP for the
purposes of the project is that it is a very elegant language which departs from the “worse
is better” philosophy of language design [39], and has a functional programming paradigm
which is simultaneously challenging and rewarding to master.

5.2.1 The functional programming paradigm
Many popular programming languages that belong to the C family of languages describe
computation as a set of statements that affects a program state. This is known as the
iterative programming paradigm. By contrast, functional programming is a subtype of the
declarative paradigm, in which computation is described as the evaluation of mathematical
functions, which avoid state. In functional programming, the output of a function depends
only on its inputs, which means that functional programs are easier to debug by design,
since there is no possibility of global state or mutability. Additionally, by describing
computation as the composition of functions instead of state machines, it is often simpler
and more intuitive to achieve a sensible level of modularity, as “two features of functional
programming languages in particular, higher-order functions and lazy evaluation, can
contribute greatly to modularity” [40].

To give a quantitative comparison of imperative and functional styles, we will compare
two implementations of the simple Fizz buzz game. Listing 5.1 contains a Java implemen-
tation, using an iterative and imperative approach. The body of the for loop is repeatedly
evaluated, with the mutable variable x acting as a counter.

The functional Clojure implementation in Listing 5.2 uses several of the unique charac-
teristics of functional programming: high-order functions, lazy evaluation, and anonymous
lambda functions. The high-order function map is used in functional composition to apply
a function over a collection. In this case, the anonymous condition function is applied
over the lazy sequence generated by range. Note that the function contains no side effects,
and since map returns a lazy sequence, the algorithm executes in O(1) time complexity,
rather than the O(n) of the Java implementation. Only when the sequence is iterated
over will the items in the sequence be evaluated, and cached for future evaluations.

1 for (int x = 1 ; x <= 50 ; x++) {
2 i f (x % 15 == 0)
3 System . out . p r i n t l n (" FizzBuzz ") ;
4 else i f (x % 3 == 0)
5 System . out . p r i n t l n (" Fizz ") ;
6 else i f (x % 5 == 0)
7 System . out . p r i n t l n ("Buzz ") ;
8 else
9 System . out . p r i n t l n (x) ;

10 }

Listing 5.1: An imperative implementation of Fizz buzz in Java.

1 (map (fn [x] (cond (ze ro ? (mod x 15)) " FizzBuzz "
2 (ze ro ? (mod x 5)) "Buzz "
3 (ze ro ? (mod x 3)) " Fizz "
4 : e l s e x))
5 (range 1 51))

Listing 5.2: A functional implementation of Fizz buzz in Clojure.

27

CHAPTER 5. PRODUCT 5.2. PROGRAMMING LANGUAGE SELECTION

5.2.2 Web programming with Clojure
In the M1 prototype implementation, a HTTP GET request from a client is handled in
the following manner:

1. A HTTP request arrives and a new thread is spawned by Apache.
2. The request path (e.g. GET /index.php) is transformed into a file system lookup

(e.g. /var/www/index.php).
3. The PHP interpreter is invoked and the matching file is evaluated line by line.
4. The output of the PHP interpreter is packed into a HTTP response body.
5. The HTTP response is annotated by Apache with relevant headers, including re-

sponse code, cache control, content type, and timestamps.
6. The HTTP response is sent back to the client.
7. The handler thread terminates and the socket is closed.

In the above sequence, the programmer may only affect the behaviour by modifying
the contents of the PHP file which is evaluated. In Clojure, the Ring2 and Compojure3

libraries provide a sequence for handling a HTTP request which is more minimalistic:

1. A HTTP request arrives and is transformed into a Clojure map.
2. This map is funnelled into a ring handler, which is a function that accepts a request

map and is expected to produce a response map.
3. The response map is transformed into a HTTP response and sent back to the client.

The disadvantage of this more minimalistic behaviour is that it requires extra effort
on behalf of the programmer to achieve the same behaviour as is provided by a LAMP
stack. The advantage is that this minimalism provides much greater control over the
process and the generation of responses. Figure 5.1 shows an example ring response map,
showing a basic “Hello, world!” response.

The Clojure web stack provides no automatic concurrency, and routing is handled very
differently from Apache. In Apache, the built in router automatically transforms requests
into file system lookups, whereas in Clojure, the router is a function that determines which
ring handler to execute based on the contents of the request map. There is therefore no
default relationship between source files and accessible paths on the web server. Routing
in pip-db is discussed in Section 5.3.1.

{
:status 200,
:headers {"Content-Type" "text/html;charset=UTF-8"},
:body "<html><body><h1>Hello, World!</h1></body></html>"

}

Figure 5.1: Example ring handler response map.

2https://github.com/ring-clojure/ring
3https://github.com/weavejester/compojure

28

CHAPTER 5. PRODUCT 5.3. PROTOTYPE REWRITE

5.3 Prototype rewrite
After the decision was made at the end of TP1 to forgo PHP in favour of Clojure for future
development, the M1 prototype was reimplemented, requiring development of much lower
level server logic and middleware.

5.3.1 Routing
In a LAMP stack, the Apache server provides a routing map which translates URLs into
file paths, such that a request for the path “/foo/bar/index.html” would translate into a
filesystem lookup for the file index.html in the subdirectory foo/bar/. In Clojure, there
is no relationship between source code and request paths, and the programmer must define
a route map which dispatches handler functions for each different path in the website.
There is a set of macros for this purpose, allowing the programmer to declare specific
handler functions for different HTTP methods (e.g. GET, PUT, and POST) and path
combinations.

In pip-db, each page (e.g. index, login, search) is given a dedicated namespace, and
each namespace contains ring handler functions named after the HTTP methods which
they support. For example a GET request for the path “/login” will be handled by the
function login/GET. The exception to this naming convention is the API namespace,
which is detailed in Section 5.5.2. Each ring hangler function accepts a single request
map, which contains the required information to generate a response, such as POST
values and headers. Listing 5.3 shows the routes defined for pip-db. Note that ring
handlers can handle dynamic paths, not just static paths. For example, the handler
for the path [“/r/:id”, :id id-re] will handle all routes which start with “/r/” and
matches the regular expression id-re, which will in turn match any 11 character string.
For example, the ring handler will match requests for the paths “/r/12345678901” and
“/r/abcdefghijk”, but not for the path “/r/foo”, since it is not an 11 digit character.

1 (d e f r ou t e s route s
2 (GET [" / "] [: as r eques t] (index /GET reques t))
3 (GET [" /advanced "] [: as r eque s t] (advanced/GET reques t))
4 (GET [" / r / : id . j son " , : id id−re] [: as r eque s t] (ap i / r r eque s t))
5 (GET [" / r / : id " , : id id−re] [: as r eque s t] (r ecord /GET reques t))
6 (GET [" /d "] [: as r eque s t] (download/GET reques t))
7 (GET [" / s "] [: as r eque s t] (s earch /GET reques t))
8 (POST [" / s "] [: as r eques t] (s earch /POST reques t))
9 (GET [" / s . j son "] [: as r eques t] (ap i / s r eque s t))

10 (GET [" / b l a s t "] [: as r eque s t] (b l a s t /GET reques t))
11 (GET [" / l o g i n "] [: as r eques t] (l o g i n /GET reques t))
12 (POST [" / l o g i n "] [: as r eque s t] (l o g i n /POST reques t))
13 (GET [" / logout "] [: as r eques t] (l ogout /GET reques t))
14 (GET [" /upload "] [: as r eque s t] (upload/GET reques t))
15 (POST [" /upload "] [: as r eques t] (upload/POST reques t))
16 (GET [" / api / s "] [: as r eque s t] (ap i / s r eque s t))
17 (GET [" / api / r / : id " , : id id−re] [: as r eque s t] (ap i / r r eque s t))
18 (GET [" / api /ac "] [: as r eque s t] (ap i /ac r eque s t))
19 (GET [" / api / ping "] [: as r eques t] (ap i / ping reque s t))
20 (route / r e s ou r c e s " / ")
21 (route /not−found (u i /page−404)))

Listing 5.3: Application ring handler routes, taken from middleware.clj.

29

CHAPTER 5. PRODUCT 5.3. PROTOTYPE REWRITE

5.3.2 Ring handlers
The routing middleware described in Section 5.3.1 is responsible for determining which
ring handler function to call based on the path in the request map. A ring handler accepts
a request map and returns a response map. Each page has its own dedicated namespace
in pip-db, and uses a Model View Controller architecture to ensure separation of data,
application, and presentation tier logic. As a result, the ring handlers are often very sim-
ple functions which merely invoke the required view or controller component. Listing 5.4
shows the ring handlers for the upload page. In the case of a GET request, the GET
ring handler invokes the view function, passing on the request map. For POST requests
(i.e. file uploads), the file is stored in a temporary location, and the controller function
process-file is invoked to handle the request and generate a response map.

1 (defn GET [reque s t]
2 (view reque s t))
3
4 (defn POST [reque s t]
5 (u t i l /with−tmp−fi le f i l e ((r eque s t : params) " f ")
6 (p r o c e s s− f i l e f i l e)))

Listing 5.4: Upload page ring handlers, taken from pages/upload.clj.

5.3.3 Generating HTML
Like many LISP dialects, Clojure maintains the “code as data” design which allows for
powerful run time manipulation of programs by modifying and creating code before eval-
uating it. This feature is extremely useful for the generation of HTML, where the reverse
interpretation of “data as code” allows HTML to be encoded as data structure within a
program, and combined and manipulated on the fly. This removes the need for a templat-
ing engine such as was used in the M1 PHP prototype, as the data structures containing
the page content can be manipulated directly.

1 [: body
2 [: h1 " Hel lo , ␣world ! "]
3 [: p { : id " foo " } "Foo "]]

Listing 5.5: Example Clojure representation of HTML elements.

1 <!DOCTYPE html>
2 <html lang=" en ">
3 <body>
4 <h1>Hello , world !</h1>
5 <p id=" foo ">Foo</p>
6 </body>
7 </html>

Listing 5.6: The HTML which is generated on evaluation of the Clojure example.

The lightweight Hiccup4 library provides a set of data structures which can be used
to represent HTML elements in Clojure, and provides the html5 function for serialising
these data structures as a string of HTML for sending to the client. Listing 5.5 shows
a very simple web page consisting of a header and a paragraph element, and Listing 5.6
shows the HTML generated by the html5 function for this web page.

4Hiccup https://github.com/weavejester/hiccup.

30

https://github.com/weavejester/hiccup

CHAPTER 5. PRODUCT 5.4. PERSISTENT STORAGE

5.4 Persistent storage
The persistent storage component of the web server is responsible for storing PIP-DB
in a manner that it can be organised, searched, and updated. PIP-DB consists of 5,773
records which have been collated from a number of sources by various people over the
course of several years. Entries were recorded by hand, meaning that there are a number
of style inconsistencies, and occasional inaccuracies as a result of human error during the
data entry phase. Examples of hazards present in PIP-DB include:

• Fields which have multiple values may have the individual values separated using
commas “,”, slashes “/”, or other delimiters.

• Numeric fields may contain imprecise, approximate, and non-numeric values (e.g.
“ 5”, “> 10”, “Room temperature”).

• Fields for which no data is available are sometimes annotated as such (e.g. “N/A”,
“Unavailable”, “-”).

Each record in PIP-DB consists of 23 fields that record various properties about
the protein, the experimental configuration, and cross-references to relevant external
databases. Potential methods for storing PIP-DB were discussed at great length with
Dr Flower, and it was made clear that the public web service should store a verbatim
copy of PIP-DB, with no attempt made to correct for errors or inaccuracies. To account
for this, a three tiered approach to data integrity was designed:

1. Pre-processing The first stage of data encoding involves the transcoding of PIP-
DB from the current format into an intermediate representation. This involves lossy
and destructive manipulation of the data, in which a set of signature based heuristics
remove known null values (e.g. “N/A”, “Unavailable”).

2. Serialising The second stage of data encoding involves the non-destructive seri-
alising of the intermediate data representation produced by pre-processing into a
set of vectors which can be stored in SQL tables. This requires that the data be
strongly typed, such that text is encoded as strings and numbers are encoded using
appropriate integer or floating point types.

3. Post-processing Data post processing involves the transformation of rows within
SQL tables into the required format for delivery to the user. This includes such
changes as converting UNIX timestamps into human-readable dates, and appending
units to numerical values.

Once the approach to data integrity had been specified, it was simply a case of de-
veloping the necessary tools to perform the required data transformations for each of the
three tiers.

5.4.1 Yet Another Protein Schema
Yet Another Protein Schema (YAPS) is the unimaginatively named schema which was
designed to store the PIP-DB records. After extensive analysis of the PIP-DB dataset,
a set of fields were chosen to encode each record within, ensuring that they capture all
pertinent information. A YAPS file format was then designed which would store these

31

CHAPTER 5. PRODUCT 5.4. PERSISTENT STORAGE

records using JSON encoding. JSON encoding was chosen as it is a human-readable
text-based file format, allowing for easy creation and manipulation.

The purpose of the YAPS file format is to capture PIP-DB records and annotate them
with additional information to improve data integrity. Chiefly, basic accountability was
incorporated into the file format by adding “Author” and “Source” tags which record the
ID of the person who generated the dataset and source file of the dataset, respectively. A
csv2yaps program was written which would parse a CSV encoded dataset and generate a
YAPS file, providing the first tier data pre-processing functionality. Listing 5.7 shows an
example YAPS file generated by csv2yaps that contains a single record entry.

1 {
2 " Encoding " : " yaps " ,
3 " Vers ion " : 4 ,
4 " Date " : " 2014−04−20␣ 02 : 29 : 48 " ,
5 " Author " : " chris@vm−ubuntu " ,
6 " Agent " : " /home/ ch r i s / s r c /pip−db/ t o o l s / csv2yaps / csv2yaps . j s " ,
7 " Source " : " /home/ ch r i s / dataset−t e s t . txt " ,
8 "No−Of−Records " : 1 ,
9 " Records " : [

10 {
11 " Protein−Names" : [
12 " Acetoacety l−CoA␣ t h i o l a s e " ,
13 " Acetyl−CoA␣ a c e t y l t r a n s f e r a s e "
14] ,
15 "EC" : " 2 . 3 . 1 . 9 " ,
16 " Source " : " Saccharomyces␣ c e r e v i s i a e ␣ (Yeast) " ,
17 " Locat ion " : " Cytosol " ,
18 "MW−Min" : " 140000 " ,
19 "MW−Max" : " 140000 " ,
20 "No−Of−Iso−Enzymes " : " 1 " ,
21 " pI−Min" : " 5 . 3 " ,
22 " pI−Max" : " 5 . 3 " ,
23 " Temperature−Min" : " 4 " ,
24 " Temperature−Max" : " 4 " ,
25 "Method " : " I s o e l e c t r i c ␣ f o cu s i ng " ,
26 " Ful l−Text " : " http ://www. jbc . org / content /246/14/4424␣ . . . " ,
27 "PubMed" : " http ://www. ncbi . nlm . nih . gov/pubmed/557183␣ . . . " ,
28 " Spec ies−Taxonomy" : " http ://www. ncbi . nlm . nih . gov/Tax␣ . . . " ,
29 " Protein−Sequence " : " http ://www. uniprot . org / uniprot /␣ . . . " ,
30 " Sequence−Name" : ">sp | P41338 |THIL_YEAST␣Acetyl−CoA␣a␣ . . . "
31 " Sequence−Data " : "MSQNVYIVSTARTPIGSFQGSLSSKTAVELGAVA␣ . . . "
32 }
33 }

Listing 5.7: An example YAPS encoded dataset, containing a single record.

Vectorisation of the YAPS file format into SQL tables involved designing a table
schema which would preserve all of the encoded data while also enforcing a strict type
system for numerical values. It was decided that the vectorised SQL representation of
a record should include additional fields of appropriate types (integer and real) to store
properties for which there may exist a numerical value, as well as storing the original text
as a string. If a record contained a numerical value for this property, then the field was
cast into that type and populated. Else, the numerical field was left empty.

32

CHAPTER 5. PRODUCT 5.4. PERSISTENT STORAGE

For example, the “Tempearture-Min” property is stored as a string, but an additional
property “real_temp_min” is created with a floating point type. A record which contains
a “Temperature-Min” value of “15” will have the “real_temp_min” field populated with
the value 15. However, a record with a “Temperature-Min” value of “> 15” will not have
a “real_temp_min” value associated with it. This means that numerical searches can be
performed by searching with the “real_temp_min” values. Any record which does not
have a “real_temp_min” value will be omitted from the search. See Table 5.2 for the full
SQL schema for storing YAPS encoded records.

Field Type Description
id* varchar(11) Unique record identifier
Protein-Names varchar Forward slash (“/”) delimited names
EC varchar Enzyme commission number
Source varchar Protein source
Location varchar Organ and/or Subcellular location
MW-Min varchar Molecular weight minimum
MW-Max varchar Molecular weight maximum
Subunit-No varchar Subunit number
Subunit-MW varchar Subunit molecular weight
No-Of-Iso-Enzymes varchar Number of iso-enzymes
pI-Min varchar Isoelectric point minimum
pI-Max varchar Isoelectric point maximum
pI-Major-Component varchar Isoelectric point of major component
Temperature-Min varchar Experimental temperature minimum
Temperature-Max varchar Experimental temperature maximum
Method varchar Experimental method
Full-Text varchar URL of full text citation
Abstract-Only varchar URL of abstract-only citation
PubMed varchar URL of PubMed article
Species-Taxonomy varchar URL of species taxonomy reference
Protein-Sequence varchar URL of protein sequence reference
Notes varchar Notes and annotations
Sequence-Name varchar FASTA sequence description
Sequence-Data varchar FASTA sequence data
real_ec1 integer Numerical first component of EC
real_ec2 integer Numerical second component of EC
real_ec3 integer Numerical third component of EC
real_ec4 integer Numerical four component of EC
real_mw_min real Numerical molecular weight minimum
real_mw_max real Numerical molecular weight maximum
real_pi_min real Numerical isoelectric point minimum
real_pi_max real Numerical isoelectric point maximum
real_temp_min real Numerical temperature minimum
real_temp_max real Numerical temperature maximum
Created-At* timestamp Timestamp of dataset creation

Table 5.2: Yet Another Protein Schema definition. Fields marked with an asterisk (*)
are derived indirectly, other fields may be null.

33

CHAPTER 5. PRODUCT 5.4. PERSISTENT STORAGE

Unique record identification

It is necessary to be able to unique identify records so that individual records may be
queried and selected. The M1 prototype implementation used a simple incrementing
integer to assign each record to a unique counter value. This approach has several dis-
advantages, the greatest of which is that it facilitates mining the entire dataset using a
simple web crawler. For example, if the individual record pages have the base url “/r/”,
then a script could be written to automatically download all ascending values in the se-
quence “/r/1”, “/r/2”, “/r/3” until it receives the first 404 file not found error, at which
point it has downloaded the complete dataset. Since access to the entirety of PIP-DB is
confidential, we must be able to take precautions to obfuscate the record URLs to prevent
this type of crawling.

The solution implemented in pip-db is to use a unique hash to identify individual
records. When a YAPS encoded record is processed, a secure SHA-1 hash of the record’s
values is computed, and encoded into base 64. The first 11 characters of this are then used
as the unique identifier (Listing 5.8). Despite only using 11 of the checksum’s characters,
the low hash collision rate of SHA-1 and the base 64 encoding provides a huge amount of
entropy, with over 7 × 1019 unique possible URLs.

1 def ge t_un ique_ident i f i e r (record) :
2 s t r i n g = se r i a l i s e_yaps_to_s t r ing (record)
3 hash = sha1 (s t r i n g)
4 b64 = base64 (hash)
5 return sub s t r i ng (b64 , 11)

Listing 5.8: Pseudocode for generating unique record identifiers, See util.clj for the
Clojure implementation.

Family Symbol Definition
id Unique identifier

N q0 . . . qn Any keywords
N a0 . . . an All keywords
N n0 . . . nn Not keywords
N eq Exact phrase
P pl, ph Minimum and maximum isoelectric point
P ml, mh Minimum and maximum molecular weight
P e0, e1, e2, e3 Enzyme commission number
P ls Source location
P ll Organ or sub-cellular location
P fn FASTA sequence name
P fs FASTA sequence string
E m Experimental method
E tl, th Minimum and maximum experimental temperature

Table 5.3: Query component symbols and their definitions.

34

CHAPTER 5. PRODUCT 5.5. SEARCH ENGINE DESIGN

5.5 Search engine design
The search functionality of pip-db supports querying individual properties of the dataset,
with the ability to combine properties to perform complex compound queries. Query
properties fall into three main categories: Name queries (N), Protein queries (P), and
Experimental method queries (E). Each category is composed of specific property queries.
See Table 5.3 for a full description. The structure of a query Q can composed in a tree-like
manner by considering Q as the sum of all individual property queries (Figure 5.2), and
using a logical AND relationship to link neighbouring nodes. By treating a query as a
tree structure, it can be easily mapped into LISP code by representing the root node of
the tree as a set of nested lists, and then serialising the data structure into a compound
SQL select statement.

A set of macros were written to create a domain specific language in Clojure for
representing queries as tree structures, with a syntax for describing comparison operations
(e.g. is equal, is greater than, is not equal), and compound operations for composing
operations (e.g. logical and, or). The query tree can then be serialised into an SQL select
statement by traversing the tree and assembling each node into a condition statement.
Listing 5.9 shows the implementation of the pip-db query tree in Clojure, where logical
reduction has been used to combine the AND conditionals where possible.

Q

E

T

thtl

m

P

F

fsfn

L

llls

E

e3e2e1e0

M

mhml

P

phpl

N

eqN

nnn0

A

ana0

Q

qnq0

id

Figure 5.2: Structure of the query tree used for composing searches of PIP-DB. Leaf
nodes represent properties. Nodes with an uppercase name denote compound AND con-
ditionals.

35

CHAPTER 5. PRODUCT 5.5. SEARCH ENGINE DESIGN

1 (AND
2 (EQ { : f i e l d " id " : va lue id : exact true })
3 (for [word q]
4 (EQ { : f i e l d " Protein−Names " : va lue word}))
5 (for [word q_any]
6 (EQ { : f i e l d " Protein−Names " : va lue word}))
7 (for [word q_ne]
8 (NE { : f i e l d " Protein−Names " : va lue word}))
9 (EQ { : f i e l d " Protein−Names " : va lue q_eq})

10 (EQ { : f i e l d " Source " : va lue q_s})
11 (EQ { : f i e l d " Locat ion " : va lue q_l })
12 (EQ { : f i e l d "Method " : va lue m})
13 (EQ { : f i e l d " Sequence−Name " : va lue seq })
14 (GTE { : f i e l d " real_pi_min " : va lue pi_l })
15 (LTE { : f i e l d " real_pi_max " : va lue pi_h})
16 (GTE { : f i e l d " real_mw_min" : va lue mw_l})
17 (LTE { : f i e l d "real_mw_max" : va lue mw_h})
18 (GTE { : f i e l d " real_temp_min " : va lue t_l })
19 (LTE { : f i e l d " real_temp_max " : va lue t_h})
20 (EQ { : f i e l d " rea l_ec1 " : va lue ec1 : numeric true })
21 (EQ { : f i e l d " rea l_ec2 " : va lue ec2 : numeric true })
22 (EQ { : f i e l d " rea l_ec3 " : va lue ec3 : numeric true })
23 (EQ { : f i e l d " rea l_ec4 " : va lue ec4 : numeric true }))

Listing 5.9: Implementation of the query tree in Clojure, from the file query.clj. Note
the flat query hierarchy and the use of the for macro for expanding multivalued queries.

5.5.1 Incorporating BLAST searching
One of the extensions to the core search engine suggested by Dr Flower was to add the
ability to perform queries of PIP-DB using Basic Local Alignment Search Tool (BLAST)
searching. NCBI BLAST consists of a suite of search tools5 which can query a database
of proteins sequences in the FASTA format, allowing users to identify proteins using parts
of sequences. Incorporating BLAST searching in pip-db involved developing a dynamic
dispatcher for the search engine which would invoke the required BLAST+ executable
when needed.

Dynamic dispatcher

Dynamic dispatch is the process by which a polymorphic function determines which be-
haviour to use at run time. The process is used extensively in pip-db, for example,
routing request maps to ring handlers (Section 5.3.1). For searches, the main search func-
tion inspects the search parameters and determines whether a BLAST search is needed
(i.e. whether the search parameters include a FASTA sequence). If a BLAST search is
required, then the blast/search function is used to handle the search. Otherwise, the
db/search function is used. In both cases, the results are merged into a results map which
contains auxiliary information such as the number of records which were searched and
the number of matching records. The custom HTTP headers “x-pip-db-query-terms” and
“x-pip-db-records” can be used to further control the contents of the response map. See
Listing 5.10 for the dispatcher implementation.

5BLAST+ executables http://blast.ncbi.nlm.nih.gov.

36

http://blast.ncbi.nlm.nih.gov

CHAPTER 5. PRODUCT 5.5. SEARCH ENGINE DESIGN

1 (defn search [r eque s t]
2 (l et [sequence ((r eque s t : params) " seq ")
3 b l a s t ? (not (str /blank ? sequence))
4 params (r eque s t : params)
5 headers (r eque s t : headers)
6 query−terms? (not (= (headers " x−pip−db−query−terms ") "None "))
7 r e co rd s ? (not (= (headers " x−pip−db−records ") "None "))
8 matching−records (i f b l a s t ? (b l a s t / search reque s t)
9 (db/ search reques t))

10 no−records−searched (i f b l a s t ? (b l a s t /no−of−records)
11 (db/no−of−records))]
12 (merge
13 (i f r e co rd s ?
14 (l et [returned−records (take max−no−of−returned−records
15 matching−records)]
16 { : No−Of−Records−Returned (count returned−records)
17 : Records returned−records }))
18 { :No−Of−Records−Matched (count matching−records)
19 : Max−No−of−Returned−Records max−no−of−returned−records
20 : No−Of−Records−Searched no−records−searched}
21 (i f query−terms?
22 { :Query−Terms (dissoc params " seq_name ") }))))

Listing 5.10: Search handler and dynamic dispatcher. Accepting a request map, the
search handler dispatches the appropriate search function (line 8), wrapping the results
into a response map.

In line 8, either the blast/search or db/search functions are dispatched to handle the
search request, depending on whether it is a BLAST or non-BLAST search, respectively.
Listing 5.11 shows the implementation of the db/search function for performing non-
BLAST searches.

1 (defn search [r eque s t]
2 (l et [query−str (params−>str (r eque s t : params))]
3 (map row−>record (s ea r ch− r e su l t s query−str))))

Listing 5.11: The db namespace search function.

The params->str function (line 2) is responsible for serialising a parameter map into
a structured query tree, and serialises it into an SQL select statement. This is used to
generate a vector of SQL record rows which are mapped over the row->record function
(line 3), converting them back into structured YAPS records by post-processing the data.

The BLAST search function (Listing 5.12) first executes the blastp program with
an appropriate environment and input filtered from the request map (line 2), and then
maps the output of the program into the function result->records which performs a re-
verse lookup of the matched sequences and performs repeated database searches for the
matched records using the parameter map. Listing 5.13 shows the implementation of the
results->records function, showing the functional composition of the db search function
to produce blast search (line 3).

1 (defn search [r eque s t]
2 (l et [r e s u l t s (b l a s t− r e s u l t s ((r eque s t : params) " seq "))]
3 (f l a t t e n (map #(result−>reco rd s r eques t %) r e s u l t s))))

Listing 5.12: The blast namespace search function.

37

CHAPTER 5. PRODUCT 5.5. SEARCH ENGINE DESIGN

1 (defn result−>reco rd s [r eque s t r e s u l t]
2 (l et [params (assoc (r eque s t : params) " seq_name " (r e s u l t : t i t l e))
3 r e co rd s (db/ search (assoc r eque s t : params params))]
4 (map #(wrap−blast−result % r e s u l t) r e co rd s)))

Listing 5.13: BLAST search output processing.

5.5.2 API and mobile code
After the implementation of the core search engine component, an API was designed
which would expose the search functionality publicly. The purpose of a public API is
to allow for programmatic public interaction with the search engine. This allows users
to write their own clients for performing searches. Communications with the public API
uses the JSON file format transmitted over HTTP. The reason for using JSON is that
it is a lightweight data encoding which is widely and simply supported in a number of
programming languages, and translates easily to and from the map structures which are
used internally within the pip-db web server. All that was required to implement the
public API was to assign ring handlers which wrap the internal search functions into
JSON responses, shown in Listing 5.14.

The public API offers benefits to software developers who intend to develop their own
pip-db clients. Additionally, it also aids in development of the core website itself. By
having a solid public API which is capable of interacting with the search engine, it is
possible to avoid having to perform the dynamic generation of HTML for search results
within the web server, and instead transmit mobile JavaScript scripts which interact with
the public API and generate the required HTML on the client side. Doing so means that
the public API is the only entry point for the search engine, which has many advantages.
Firstly, it creates a simpler project, since it reduces the number of the APIs. Both internal
and external clients use the same consistent API. This improves maintainability, as there is
only one point of change for modifications, and it reduces the code size. Using mobile code
also reduces the bandwidth load on the server, as transmitted JavaScript can be cached
by web clients, requiring only JSON search results to be transmitted. This increases the
throughput of the server by offloading the computational expense of generating HTML
from the web server to the client browser, and uses the standard distributed application
practise of balancing computation across all nodes in a system, not relying on the central
web server node to preform all of the computation, leading to performance bottlenecks.

The size of the client side vs. web server code bases are indicative of the amount of
computation that is performed on each side. The pip-db web server consists of 1,882 lines
of Clojure LISP, and the line count for client side scripts is only marginally lower at 1,713.
This indicates the balance between server-side and client-side computation. The public
API also enables asynchronous AJAX communications with the search engine, a feature
which is exploited extensively in the usability features described in Section 5.5.3.

1 (defn s [r eque s t]
2 (u t i l / j son−response (search / search reques t)))
3
4 (defn r [r eque s t]
5 (u t i l / j son−response (search / search (u t i l /remap−id−param reques t))))

Listing 5.14: API ring handler implementations, taken from api.clj.

38

CHAPTER 5. PRODUCT 5.5. SEARCH ENGINE DESIGN

5.5.3 API-enabled search engine usability
As described in Section 3.2.1, a human-centred approach was adopted for the design of
the website. Through consistent interaction with potential users and the evaluation of
common use cases, a number of attempts to innovate the user experience for bioinformatics
search engines were made. For the search page, a combination of mobile code and the
public API was used to implement two features to streamline the process of entering
complex searches: the first is context sensitive Autocompletion of fields using a dedicated
API, and the second is a widget which indicates the number of results will be returned
by a given search. Figure 5.3 shows how a client browser interacts with these APIs when
the user fills in a search form.

User Browser /api/ac /api/s /s db

Keystroke
Field value

Lookup
Results

Results map
Suggestions

looploop Autocompletion

Modify form
Form values

Search
Results

Results map
No of results

looploop Results indicator

Submit form
Form values

Search
Results

Results map
Results page

Figure 5.3: Search form sequence diagram. The instances /api/ac, /api/s, and /s,
represent the public web services available at those locations. Communication from the
browser to those services takes the form of asynchronous HTTP GET requests.

39

CHAPTER 5. PRODUCT 5.6. WEBSITE DESIGN AND USAGE

5.6 Website design and usage
This section contains an annotated visual overview of the design of the pip-db website,
and its usage instructions.

Figure 5.4: The pip-db homepage. This provides the main entry point into the website.
Users may perform basic protein name queries, and navigate to the advanced search and
BLAST search pages. The copy is text provided by Dr Flower to explain the purpose of
PIP-DB and to provide scientific context and background for the data.

40

CHAPTER 5. PRODUCT 5.6. WEBSITE DESIGN AND USAGE

Figure 5.5: The pip-db advanced search page. This page allows users to query the
database using a combination of different properties, including protein name keyword
matching, and numerical properties such as temperature and pI.

Figure 5.6: Autocompletion suggestions on the advanced search page for the term
kina. The autocompletion API uses frequency analysis of the most common terms in
the database to provide appropriate suggestions, so that the most frequently used match-
ing terms are suggested first.

41

CHAPTER 5. PRODUCT 5.6. WEBSITE DESIGN AND USAGE

Figure 5.7: The pip-db results indicator on the advanced search page. The results
indicator shows the number of records which match the current search query, and is
updated dynamically as the user fills out the form. The screenshot shows that 3 records
will be returned for the current search terms. Also visible is the use of a sliding range
input widget for specifying a range of pI values to search.

Figure 5.8: The pip-db search results page for the search term Alkaline phosphatase.
The search results page lists the protein names and pI of each matching record. If the
user clicks on a record, further information about the record is revealed. Clicking the “See
more information” link will then redirect the user to that specific record’s page. There is
a button to download the search results in CSV or JSON formats.

42

CHAPTER 5. PRODUCT 5.6. WEBSITE DESIGN AND USAGE

Figure 5.9: The pip-db record page, showing an Alkaline phosphatase entry. The page
shows property values, with a “See other records like this” link for showing records with
identical property values. Links and cross-references to external resources are shown in
the top right, along with a button to download the record. Beneath that is an automatic
page reference generator, for the purpose of citations.

Figure 5.10: The pip-db download results page, which supports the download of search
results and individual records in either CSV or JSON formats.

43

Chapter 6

Evaluation

Evaluation of pip-db comprised of both qualitative and quantitative evaluations. Qualita-
tive usability testing was conducted in mid April at the end of the product development,
and a criteria-based quantitative evaluation was performed at the start of May.

6.1 Usability testing
Usability testing is a popular technique in qualitative software evaluation in which partic-
ipants are observed in a controlled environment performing a set of predetermined tasks
in order to asses the usability of a product [41].

6.1.1 Methodology
Usability tests of pip-db were conducted over a ten day period, and consisted of presenting
a set of user scenarios to a participant which they would work through. Each scenario
would involve a multiple tasks designed to test the intuitive user friendliness of the pip-db
website. Observations and notes are made throughout the course of the test, detailing any
usability issues that the participant encountered. Appendix C describes the procedure of
the tests. Appendix D contains the user scenarios which were evaluated. Five tests were
conducted in total, with three PhD students specialising in a relevant biology field, and
two non-scientific participants. In the case of user testing with participants who do not
have a relevant scientific background, extra verbal explanation was given to provide the
necessary scientific context and understanding. Following recommended practises, each
test session was recorded using audio and screen capture of the testing computer [42].

6.1.2 Results
The results of user testing were generally very positive. Participants were largely satisfied
with the user interface and were able to complete the tasks with little to no difficulty.
However, several problems were discovered as a result of the tests:

• Multiple participants were unsure how to input a numerical range query when only
an upper or lower bound is provided.

• One of the participants noticed a factual error within PIP-DB. There is no contact
address to report errors and corrections.

44

CHAPTER 6. EVALUATION 6.2. QUANTITATIVE EVALUATION

• Every participant commented on the on the effectiveness of the results indicator on
the advanced search page. However, on several occasions, the results indicator fell
of sync with the search form state, leading to confusion from participants. This
is because of the latency between changing a field value and updating the results
indicator.

• One of the participants noticed that the only way to return to the previous page
from the download results page is by using the web browser’s back button.

• One of the participants was unable to locate the “Download results” button, to its
placement in the top right of the screen, out of the main path of scanning.

• Multiple participants found the placeholder text very helpful in understanding the
type of value which a search field expected. However, not every input field has a
placeholder value, and some confusion was still had on the fields without placehold-
ers.

• One of the participants was unsure of what query was performed when clicking the
“See other records like this” button. There is no visual indicator on the search
results page to show the user what the current search terms are.

• Two of the participants noted that they would prefer the ability to type in exact
numerical isoelectric point query values rather than scrubbing a slider widget.

In all but one of the cases, it would be possible to mitigate the usability problem
through minor modifications to the user interface. The result indicator issue is a more
technically involved problem which would only be mitigated through the addition of a
visual indicator to show when the value is out of sync.

6.2 Quantitative evaluation
Quantitative research involves evaluating a product using empirical and statistical tech-
niques. For the quantitative evaluation of pip-db, a criteria-based assessment was per-
formed using a set of criteria published by Jackson et al [43].

6.2.1 Methodology
The chosen assessment criteria offer a “quantitative assessment of software in terms of
sustainability, maintainability, and usability”. It was chosen as the quantitative evaluation
method due to its emphasis on the evaluation of non-functional requirements, which are
often overlooked through usability testing alone. The assessment criteria are worded in a
manner targeted at standalone application development, not web applications. As a result,
not all of the criteria were evaluated. An additional subset of the criteria was deemed
irrelevant and note evaluated, for example evaluation of the current/future community.

6.2.2 Results
Appendix E contains the full table of results, with yes/no answers for each of the criteria,
along with notes and annotations. The project scores strongly in the sustainability and

45

CHAPTER 6. EVALUATION 6.2. QUANTITATIVE EVALUATION

maintainability categories, due to it’s permissive open source license, heavy use of com-
menting, unit testing frameworks, and automated tooling. The project scores lower in
the usability category due to the relative shortage of user-orientated documentation. The
importance of user documentation for websites is debatable, although at a minimum, a
dedicated help page could alleviate common usability problems. The project also scores
relatively lowly for testing due to its lack of automated GUI testing and scripted database
testing.

46

Chapter 7

Conclusions

The web application described in this document entirely fulfils the stated goal of cate-
gorising and providing accessible online search functionality for PIP-DB. In addition to
satisfying the core deliverables, a pragmatic approach to the development of infrastructure
and tooling has resulted in the creation of several supporting projects, including the YAPS
file format, pipbot repository manager, plausible nonsense generator, and CSV analyser.
Additionally, contributions have been made to four popular existing open source projects
as a result of development: watch-less, clojure-koans, sqlkorma, and gitstats.

The pip-db repository contains 34,205 lines of code, with an estimated development
time of 605 hours, based on the 2,420 revisions in the version control history (based on
an assumed average time cost of 15 minutes of development per revision). While costly
in terms of time, the radical switch in programming language after the completion of the
initial prototype allowed for a rare direct comparison to be made between non-trivial soft-
ware written in PHP and Clojure. The comparison can be used for qualitative evaluation
of the strengths of both languages, and results showed that the reimplementation in a
functional language resulted in a 75% reduction in code base size for functionally identical
web server implementations [44].

Development of an Autotooled build system for websites showed how shell-level par-
allelism could be used to reduce execution times by a factor of 5. Further work on the
build system could reduce these times further by enabling parallelism within the core of
automake. It is possible to repurpose the build system for future web application projects.

It my recommendation that further usability tests be performed on the existing pip-db
design before any modifications are made to the user interface. While defended by some
[45], it is generally believed that a usability testing sample size of 5 is too small to reveal
an adequate number of usability problems [46, 47]. Further work on the pip-db website
could include the development of administrative tools for modifying data, and refinements
to the performance and security of the web server implementation. Increased scalability
could be provided by implementing multi-threading support for request handling, and
greater edge case handling could increase the server’s robustness. One overlooked aspect
of pip-db is the user account and registration system. The implementation of an accounts
system was left incomplete as time was devoted instead to the implementation of novel
features and user interaction refinements. The persistent storage component of pip-db
could be the subject of future research, with NoSQL technologies finding increasing usage
for the similar purposes of document storage [48–51]. Using a NoSQL store in place of
the existing PostgreSQL back-end would remove the need for the vectorisation of YAPS
records and greatly simply the data upload logic.

47

Appendix A

Risk mitigation strategies

R1 - Design is not intuitive The key to mitigation of this risk is in frequent and
effective user testing and an understanding of typical and common use-cases for the prod-
uct.

R2 - Project involves use of new technical skills In order to prevent this risk from
having a serious impact on the project, it will be necessary to begin studying and reading
about the technologies that will be used at a very early stage in the project, long before
the start of the implementation.

R3 - High Level of technical complexity Avoiding this risk will involve ensuring that
the scope of the project remains technically feasible, and that the software architecture
is abstracted into small enough units that it is easier to focus on each one separately, as
well as keeping small iterative development cycles and adequate test coverage to prevent
regressions when implementing new functionality.

R4 - Complex deployment of production website A website with independent
data and application logic components can result in an intricate deployment process. This
is a common problem in the development of complex web application, where development
and production environments must be synchronised and differences between debugging
and releases builds must be accounted for. In order to mitigate this risk, a suite of tools
to configure, build and deploy the website should be developed at an early stage, allowing
for fast deployment of public releases.

R5 - Project milestones not clearly defined A thoroughly described and well
thought out project plan will help to prevent scheduling issues and delays in develop-
ment that would arise from this risk.

R6 - System requirements not adequately identified A comprehensive specifi-
cation of the finished product before implementation begins will help to mitigate this
risk.

R7 - Change in project requirements during development An agile approach
towards accommodating for changes in the requirements should be used so as to keep the
time between user feedback sessions and input from stakeholders low.

48

APPENDIX A. RISK MITIGATION STRATEGIES

R8 - Changes in dataset format during development It is not possible to entirely
avoid this risk due its nature and the dependence on third parties, but steps can be
taken to prevent any delays that this would cause, chiefly, a well abstracted data parsing
component which can be switched and modified if necessary to accommodate for a new
dataset format.

R9 - Unable to obtain required resources Since the project does not require many
resources, it is important to acquire these as early on in the development process as
possible, and alternative resources should be planned for, such as local test servers.

R10, R11, R12 - Users not committed to the project, lack of cooperation from
users, and users with negative attitudes toward the project The usefulness of the
finished project will depend largely on ensuring that the needs of the users are considered
the primary goals of the design. Violating this principle may cause disillusionment from
the people who are volunteering their time to assist in the project.

49

Appendix B

D1 and M1 comparison screenshots

The following side by side images compare the D1 low fidelity mockups generated in
Balsmiq with the M1 prototype implementation. The images on the left are static user
interface mockups, the images on the right are screenshots of the interactive website.

Home page.

Advanced search page.

50

APPENDIX B. D1 AND M1 COMPARISON SCREENSHOTS

Search results page.

Record details page.

Upload page.

51

Appendix C

Usability testing procedure

Introduction and consent
1. Meet participant and introduce yourself and project.
2. Explain the purpose of the testing and it’s role within the academic project

assessment. The tests are for the product, not of the participant.
3. Request permission to record audio and screen capture the testing device. The

purpose of the recordings are to prevent me from having to transcribe everything
that is said as it is happening.

4. Request permission for recording to be distributed as evidence of usability testing
if required.

Testing introduction
1. Start recording.
2. Ask for a brief overview of the participant’s background, and what they’re study-

ing.
3. Ascertain the participant’s understanding of the relevant science background and

terminology.
4. Ascertain the participant’s familiarity with the dataset. Any prior knowledge

of the project should be stated here.
5. Demonstrate to the participant how to use the testing device.
6. Thinking aloud - provide a hands on demonstration of thinking aloud using the

Aston website. Show how you would navigate to find out how to apply for a research
degree in CS department.

52

APPENDIX C. USABILITY TESTING PROCEDURE

Testing
1. First impressions - bring up the website on the testing device and hand over

controls to participant.
2. Present task list to the participant and explain why it exists. Unlike many web-

sites, pip-db is a specific tool to be used to answer questions and perform specific
searches, so it is helpful to have a set of staged questions rather than letting the
user browse indiscriminately.

3. Work through tasks - Give a spoken introduction to each one, and ask that the
participant says out loud which step they are working on.

Post-test
1. What is your overall impression of the site?
2. Would you use the website for tasks like those you worked through?
3. How likely do you see yourself performing a task like those you worked through

under normal conditions?
4. If you were to change one thing about the website, what would it be?
5. Score out of 10.

End of session
1. Thank participant for their time and cooperation.
2. Any closing thoughts or questions?
3. Stop recording.

53

Appendix D

Usability testing scenarios

The following four scenarios are to be completed by the participant during usability
testing.

1. Researching a specific protein
1. You are conducting an experiment which requires you to know the isoelectric point

(pI) of a protein called Lactoferrin.
2. You would also like to know the range of isoelectric points (lowest and highest) for

all proteins obtained from the same source as Lactoferrin.

2. Performing broad searches
1. In this scenario, you would like to research Kinase proteins. You would like to

download a CSV file which contains all proteins which match the following criteria:

• They must contain Kinase in their names.
• They were obtained from a Human source.
• Their enzyme commission number begins with the three digits 2.7.1.
• They were discovered at a temperature greater than or equal to 4℃.

2. Once you have downloaded the CSV file, open it in a spreasheet program and identify
the one protein with a Molecular Weight of 86,000.

3. Further broad searches
1. You would like to know the number of entries in the database which contain the

word Kinase in their names, and compare this to the number of entries which do
not contain the word Kinase.

2. From the entries which do not contain the word Kinase, you would like to find the
protein with the lowest isoelectric point.

3. You would like to know the names of the authors of the PubMed article for this
protein.

54

APPENDIX D. USABILITY TESTING SCENARIOS

4. Identifying proteins using FASTA sequence
1. You have been supplied with the following protein sequence:

>sp|P02754|LACB_BOVIN Beta-lactoglobulin OS=Bos taurus GN=LGB PE=1 SV=3
MKCLLLALALTCGAQALIVTQTMKGLDIQKVAGTWYSLAMAASDISLLDAQSAPLRVYVE
ELKPTPEGDLEILLQKWENGECAQKKIIAEKTKIPAVFKIDALNENKVLVLDTDYKKYLL
FCMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI

You would like to identify the protein that this sequence came from, and download
a CSV file containing the details of all protiens which match this sequence with an
isoelectric point within the range 5.1 - 5.2.

END OF SCENARIOS.

55

Appendix E

Criteria-based evaluation results

This section contains the results of the quantitative criteria-based evaluation.

Criterion Yes/No, notes
Descriptions of intended use cases are available No
Documentation lists resources for further information No
Plain-text documentation uses indentation and underlining
to structure the text Yes

API documentation documents APIs completely Partial coverage
Documentation is held under version control alongside code Yes
Documentation is on the project web site Yes
Documentation on the project web site makes it clear what
version of the software it applies to

Yes, documentation is
version controlled

Web site has instructions for building the software Yes
Source distributions have instructions for building the
software Yes

An automated build is used to build the software Yes
Web site lists all third-party dependencies that are not
bundled Yes

Source distributions lists all third-party dependencies that
are not bundled Yes

Dependency management is used to automatically download
dependencies Partial

All mandatory third-party dependencies are currently
available Yes

All optional third-party dependencies are currently available Yes

Tests are provided to verify the build has succeeded No, although build
will fail

Web site has instructions for installing the software Yes
When an archive is unpacked, it creates a single directory
with the files within Yes

All source distributions contain a README with project
name, web site, how/where to get help, version, date, license
and copyright

Yes

Continued on next page. . .

56

APPENDIX E. CRITERIA-BASED EVALUATION RESULTS

Criterion Yes/No, notes

Installers allow user to select where to install software Yes, see configure
script

Uninstallers uninstall every file or warns user of any files
that were not removed and where these are Yes

A getting started guide is provided outlining a basic example
of using the software No

Instructions are provided supporting all use cases No
Instructions are provided supporting all use command-line,
GUI and configuration options Yes

API documentation is provided for developers Yes

To what extent is the identity of the project clear and
unique both within its application domain and generally

Partial - project
description requires
knowledge of domain

Software has its own domain name Yes
Software has a logo Yes
Software has a distinct name within its application area Debatable
Software is trade-marked No
Web site states copyright Yes
To what extent is it clear who wrote the software and owns
its copyright?

Stated in every
copyright header

Each source code file has a copyright statement No
Has an appropriate license been adopted Yes, GPL v3
Software has an Open Software Initiative (OSI) recognised
license Yes, GPL v3

Project has a defined governance policy No
Source distributions are freely available Yes, GitHub
Source distributions are available without the need for any
registration Yes, GitHub

Anonymous read-only access to source code repository Yes, GitHub
Ability to browse source code repository online Yes, GitHub

Downloads page shows evidence of regular releases
Yes, there have been
57 releases. Current
version is 0.6.3

Project has unit tests Yes
Project has integration tests Yes
Project uses automated GUI test frameworks No
Project recommends tools to check conformance to coding
standards Yes

Project has automated tests to check conformance to coding
standards Partial

Tests are automatically run whenever the source code
changes Yes

A minimum test coverage level that must be met has been
defined No

Test results are visible publicly Yes
Continued on next page. . .

57

APPENDIX E. CRITERIA-BASED EVALUATION RESULTS

Criterion Yes/No, notes
Tests create their own files, database tables etc. No
Application can be built on and run under Windows No
Application can be built on and run under UNIX/Linux Yes
Browser applications run under Internet Explorer Yes
Browser applications run under Mozilla Firefox Yes
Browser applications run under Google Chrome Yes
Web site has page describing how to get support Yes
Project has an e-mail address No
Source code is structured into modules or packages Yes
Source code structure relates clear to the architecture Yes
Project files for IDEs are provided No
Source releases are snapshots of the repository Yes
There is no commented out code Yes

There are no TODOs in the code No, further work is
suggested

Auto-generated source code is in separate directories from
other source code No

Coding standards are recommended by the project Yes

58

Bibliography

[1] D. Bell. UML basics: An introduction to the Unified Modeling Language. IBM Cor-
poration. 2003. url: http://www.ibm.com/developerworks/rational/library/
769.html.

[2] D. Bell. UML basics: The sequence diagram. IBM Corporation. 2004. url: http:
//www.ibm.com/developerworks/rational/library/3101.html.

[3] F. P Brooks Jr. The Mythical Man-Month, Anniversary Edition: Essays on Software
Engineering. Pearson Education, 1995.

[4] J. Highsmith and A. Cockburn. “Agile software development: The business of inno-
vation”. In: Computer 34.9 (2001), pp. 120–127.

[5] R. C. Martin. Agile software development: principles, patterns, and practices. Pren-
tice Hall PTR, 2003.

[6] M. Fowler and J. Highsmith. “The agile manifesto”. In: Software Development 9.8
(2001), pp. 28–35.

[7] R. Balduino. “Introduction to OpenUP (Open Unified Process)”. In: Eclipse site
(2007).

[8] P. Kroll and B. MacIsaac. Agility and Discipline Made Easy: Practices from OpenUP
and RUP. Pearson Education, 2006.

[9] S. Chacon and J. Hamano. Pro git. Vol. 288. Springer, 2009.
[10] S. Weber. The success of open source. Vol. 368. Cambridge Univ Press, 2004.
[11] M. Godfrey and Q. Tu. “Evolution in open source software: A case study”. In:

Software Maintenance, 2000. Proceedings. International Conference on. IEEE. 2000,
pp. 131–142.

[12] H. Chesbrough, W. Vanhaverbeke, and J. West. Open innovation: Researching a
new paradigm. Oxford university press, 2006.

[13] E. Von Hippel. Democratizing innovation. MIT press, 2005.
[14] E. Raymond. “The cathedral and the bazaar”. In: Knowledge, Technology & Policy

12.3 (1999), pp. 23–49.
[15] Free Software Foundation Inc. “Version 3”. In: GNU General Public License (2007).

url: https://www.gnu.org/copyleft/gpl.html.
[16] K. Finley. Github has surpassed Sourceforge and Google Code in popularity. Blog.

2011. url: http://readwrite.com/2011/06/02/github-has-passed-sourceforge.
[17] C. Cummins. pip-db. https://github.com/ChrisCummins/pip-db. Git Reposi-

tory. 2014.

59

http://www.ibm.com/developerworks/rational/library/769.html
http://www.ibm.com/developerworks/rational/library/769.html
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html
https://www.gnu.org/copyleft/gpl.html
http://readwrite.com/2011/06/02/github-has-passed-sourceforge
https://github.com/ChrisCummins/pip-db

BIBLIOGRAPHY BIBLIOGRAPHY

[18] V. Driessen. A successful Git branching model. Blog. 2010. url: http://nvie.com/
posts/a-successful-git-branching-model/.

[19] M. Maguire. “Methods to support human-centred design”. In: International journal
of human-computer studies 55.4 (2001), pp. 587–634.

[20] Z. Lu. “PubMed and beyond: a survey of web tools for searching biomedical liter-
ature”. In: Database: the journal of biological databases and curation 2011.Preprint
(2011).

[21] M. A. Hearst et al. “BioText Search Engine: beyond abstract search”. In: Bioinfor-
matics 23.16 (2007), pp. 2196–2197.

[22] K. Pavelin et al. “Bioinformatics meets user-centred design: a perspective”. In: PLoS
computational biology 8.7 (2012), e1002554.

[23] D. Bolchini et al. “Better bioinformatics through usability analysis”. In: Bioinfor-
matics 25.3 (2009), pp. 406–412.

[24] F. N. Egger. “Lo-Fi vs. Hi-Fi Prototyping: how real does the real thing have to be?”
In: “Teaching HCI” workshop (2000). url: http://www.telono.com/fr/nos-
articles/lo-fi-vs-hi-fi-prototyping-how-real-does-the-real-thing-
have-to-be/.

[25] J. Brandt et al. “Opportunistic Programming: How Rapid Ideation and Prototyping
Occur in Practice”. In: Proceedings of the 4th International Workshop on End-user
Software Engineering. WEUSE ’08. Leipzig, Germany: ACM, 2008, pp. 1–5. isbn:
978-1-60558-034-0. doi: 10.1145/1370847.1370848. url: http://doi.acm.org/
10.1145/1370847.1370848.

[26] T. P. Kelly. “Optimization in web caching: Cache management, capacity planning,
and content naming”. PhD thesis. Microsoft Research, 2002.

[27] R. Love. “Kernel korner: Intro to inotify”. In: Linux Journal 2005.139 (2005), p. 8.
[28] I. Shields. Monitor Linux file system events with inotify. 2010. url: https://www.

ibm.com/developerworks/library/l-inotify/.
[29] J. Atwood. Markov and You. Blog. 2008. url: http://blog.codinghorror.com/

markov-and-you/.
[30] H. Zhu, P. Hall, and J. May. “Software unit test coverage and adequacy”. In: Acm

computing surveys (csur) 29.4 (1997), pp. 366–427.
[31] M. R. Woodward, D. Hedley, and M. A. Hennell. “Experience with path analysis

and testing of programs”. In: Software Engineering, IEEE Transactions on 3 (1980),
pp. 278–286.

[32] K. Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.
[33] M. Fowler and M. Foemmel. “Continuous integration”. In: Thought-Works (2006).

url: http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013- 14/
lecturas/10_Fowler_Continuous_Integration.pdf.

[34] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration: improving software
quality and reducing risk. Pearson Education, 2007.

[35] E. S. Raymond. The art of Unix programming. Addison-Wesley Professional, 2003.
[36] A. Munroe. PHP: a fractal of bad design. 2012.

60

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://www.telono.com/fr/nos-articles/lo-fi-vs-hi-fi-prototyping-how-real-does-the-real-thing-have-to-be/
http://www.telono.com/fr/nos-articles/lo-fi-vs-hi-fi-prototyping-how-real-does-the-real-thing-have-to-be/
http://www.telono.com/fr/nos-articles/lo-fi-vs-hi-fi-prototyping-how-real-does-the-real-thing-have-to-be/
http://dx.doi.org/10.1145/1370847.1370848
http://doi.acm.org/10.1145/1370847.1370848
http://doi.acm.org/10.1145/1370847.1370848
https://www.ibm.com/developerworks/library/l-inotify/
https://www.ibm.com/developerworks/library/l-inotify/
http://blog.codinghorror.com/markov-and-you/
http://blog.codinghorror.com/markov-and-you/
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[37] S. Halloway. Programming Clojure. Pragmatic Bookshelf, 2009.
[38] J. M. Kraus and H. A. Kestler. “Multi-core Parallelization in Clojure: A Case

Study”. In: Proceedings of the 6th European Lisp Workshop. ELW ’09. Genova, Italy:
ACM, 2009, pp. 8–17. isbn: 978-1-60558-539-0. doi: 10.1145/1562868.1562870.
url: http://doi.acm.org/10.1145/1562868.1562870.

[39] R. Gabriel. “The rise of "worse is better"”. In: Lisp: Good News, Bad News, How to
Win Big 2 (1991), p. 5.

[40] J. Hughes. “Why functional programming matters”. In: The computer journal 32.2
(1989), pp. 98–107.

[41] J. Rubin and D. Chisnell. Handbook of usability testing: howto plan, design, and
conduct effective tests. John Wiley & Sons, 2008.

[42] J. S. Dumas and J. Redish. A practical guide to usability testing. Intellect Books,
1999.

[43] M. Jackson, S. Crouch, and R. Baxter. “Software Evaluation: Criteria-based Assess-
ment”. In: Software Sustainability Institute (2011).

[44] C. Cummins. Migrating PHP to Clojure. http : / / chriscummins . cc / posts /
migrating-php-to-clojure/. Blog. 2014.

[45] J. Nielsen. Why you only need to test with 5 users. 2000.
[46] J. Spool and W. Schroeder. “Testing web sites: Five users is nowhere near enough”.

In: CHI’01 extended abstracts on Human factors in computing systems. ACM. 2001,
pp. 285–286.

[47] A. Woolrych and G. Cockton. “Why and when five test users aren’t enough”. In:
Proceedings of IHM-HCI 2001 conference. Vol. 2. Cépadèus Toulouse„ France. 2001,
pp. 105–108.

[48] B. G. Tudorica and C. Bucur. “A comparison between several NoSQL databases
with comments and notes”. In: Roedunet International Conference (RoEduNet),
2011 10th. IEEE. 2011, pp. 1–5.

[49] MongoDB Inc. MongoDB – The Leading NoSQL Database. Website. 2014. url:
http://www.mongodb.com/leading-nosql-database.

[50] R. Hecht and S. Jablonski. “NoSQL Evaluation: A Use Case Oriented Survey”. In:
2011 International Conference on Cloud and Service Computing. 2011, pp. 336–341.

[51] MongoDB Inc. Top 5 Considerations When Evaluating NoSQL Databases. Online.
2013.

61

http://dx.doi.org/10.1145/1562868.1562870
http://doi.acm.org/10.1145/1562868.1562870
http://chriscummins.cc/posts/migrating-php-to-clojure/
http://chriscummins.cc/posts/migrating-php-to-clojure/
http://www.mongodb.com/leading-nosql-database

	Introduction
	Risk Assessment
	Process
	Development process
	Design process

	Infrastructure
	Build automation
	Test automation
	Task automation

	Product
	Implementation of the prototype
	Programming language selection
	Prototype rewrite
	Persistent storage
	Search engine design
	Website design and usage

	Evaluation
	Usability testing
	Quantitative evaluation

	Conclusions
	Appendix Risk mitigation strategies
	Appendix D1 and M1 comparison screenshots
	Appendix Usability testing procedure
	Appendix Usability testing scenarios
	Appendix Criteria-based evaluation results
	Bibliography

