Skip to content

Commit

Permalink
Add several models for calculating possible definitions for two-phase…
Browse files Browse the repository at this point in the history
… liquid-gas viscosity
  • Loading branch information
CalebBell committed Aug 26, 2017
1 parent cd6a82d commit 1f1d416
Show file tree
Hide file tree
Showing 2 changed files with 390 additions and 3 deletions.
346 changes: 344 additions & 2 deletions fluids/two_phase_voidage.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,8 @@
'Nicklin_Wilkes_Davidson', 'Gregory_Scott', 'Dix',
'Sun_Duffey_Peng', 'Xu_Fang_voidage', 'Woldesemayat_Ghajar',
'Lockhart_Martinelli_Xtt', 'two_phase_voidage_experimental',
'density_two_phase']
'density_two_phase', 'Beattie_Whalley', 'McAdams', 'Cicchitti',
'Lin_Kwok', 'Fourar_Bories']

### Models based on slip ratio

Expand Down Expand Up @@ -407,7 +408,7 @@ def homogeneous(x, rhol, rhog):
Upward Inclined Pipes." International Journal of Multiphase Flow 33,
no. 4 (April 2007): 347-370. doi:10.1016/j.ijmultiphaseflow.2006.09.004.
'''
return 1./(1 + (1-x)/x*(rhog/rhol))
return 1./(1. + (1-x)/x*(rhog/rhol))


def Chisholm_Armand(x, rhol, rhog):
Expand Down Expand Up @@ -1928,3 +1929,344 @@ def two_phase_voidage_experimental(rho_lg, rhol, rhog):
no. 1 (October 1, 2008): 106-13.
'''
return (rho_lg - rhol)/(rhog - rhol)


### two-phase viscosity models


def Beattie_Whalley(x, mul, mug, rhol, rhog):
r'''Calculates a suggested definition for liquid-gas two-phase flow
viscosity in internal pipe flow according to the form in [1]_ and shown
in [2]_ and [3]_.
.. math::
\mu_m = \mu_l(1-\alpha_m)(1 + 2.5\alpha_m) + \mu_g\alpha_m
\alpha_m = \frac{1}{1 + \left(\frac{1-x}{x}\right)\frac{\rho_g}{\rho_l}}
\text{(homogeneous model)}
Parameters
----------
x : float
Quality of the gas-liquid flow, [-]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
rhol : float
Density of the liquid [kg/m^3]
rhog : float
Density of the gas [kg/m^3]
Returns
-------
mu_lg : float
Liquid-gas viscosity (**a suggested definition, potentially useful
for empirical work only!**) [Pa*s]
Notes
-----
This model converges to the liquid or gas viscosity as the quality
approaches either limits.
Examples
--------
>>> Beattie_Whalley(x=0.4, mul=1E-3, mug=1E-5, rhol=850, rhog=1.2)
1.7363806909512365e-05
References
----------
.. [1] Beattie, D. R. H., and P. B. Whalley. "A Simple Two-Phase Frictional
Pressure Drop Calculation Method." International Journal of Multiphase
Flow 8, no. 1 (February 1, 1982): 83-87.
doi:10.1016/0301-9322(82)90009-X.
.. [2] Awad, M. M., and Y. S. Muzychka. "Effective Property Models for
Homogeneous Two-Phase Flows." Experimental Thermal and Fluid Science 33,
no. 1 (October 1, 2008): 106-13.
.. [3] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and
Predictive Methods for Pressure Drop in Adiabatic, Condensing and
Boiling Mini/Micro-Channel Flows." International Journal of Heat and
Mass Transfer 77 (October 2014): 74-97.
doi:10.1016/j.ijheatmasstransfer.2014.04.035.
'''
alpha = homogeneous(x, rhol, rhog)
return mul*(1. - alpha)*(1. + 2.5*alpha) + mug*alpha


def McAdams(x, mul, mug):
r'''Calculates a suggested definition for liquid-gas two-phase flow
viscosity in internal pipe flow according to the form in [1]_ and shown
in [2]_ and [3]_.
.. math::
\mu_m = \left(\frac{x}{\mu_g} + \frac{1-x}{\mu_l}\right)^{-1}
Parameters
----------
x : float
Quality of the gas-liquid flow, [-]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
Returns
-------
mu_lg : float
Liquid-gas viscosity (**a suggested definition, potentially useful
for empirical work only!**) [Pa*s]
Notes
-----
This model converges to the liquid or gas viscosity as the quality
approaches either limits.
[3]_ states this is the most common definition of two-phase liquid-gas
viscosity.
Examples
--------
>>> McAdams(x=0.4, mul=1E-3, mug=1E-5)
2.4630541871921184e-05
References
----------
.. [1] McAdams, W. H. "Vaporization inside Horizontal Tubes-II Benzene-Oil
Mixtures." Trans. ASME 39 (1949): 39-48.
.. [2] Awad, M. M., and Y. S. Muzychka. "Effective Property Models for
Homogeneous Two-Phase Flows." Experimental Thermal and Fluid Science 33,
no. 1 (October 1, 2008): 106-13.
.. [3] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and
Predictive Methods for Pressure Drop in Adiabatic, Condensing and
Boiling Mini/Micro-Channel Flows." International Journal of Heat and
Mass Transfer 77 (October 2014): 74-97.
doi:10.1016/j.ijheatmasstransfer.2014.04.035.
'''
return 1./(x/mug + (1. - x)/mul)


def Cicchitti(x, mul, mug):
r'''Calculates a suggested definition for liquid-gas two-phase flow
viscosity in internal pipe flow according to the form in [1]_ and shown
in [2]_ and [3]_.
.. math::
\mu_m = x\mu_g + (1-x)\mu_l
Parameters
----------
x : float
Quality of the gas-liquid flow, [-]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
Returns
-------
mu_lg : float
Liquid-gas viscosity (**a suggested definition, potentially useful
for empirical work only!**) [Pa*s]
Notes
-----
This model converges to the liquid or gas viscosity as the quality
approaches either limits.
Examples
--------
>>> Cicchitti(x=0.4, mul=1E-3, mug=1E-5)
0.0006039999999999999
References
----------
.. [1] Cicchitti, A., C. Lombardi, M. Silvestri, G. Soldaini, and R.
Zavattarelli. "Two-Phase Cooling Experiments: Pressure Drop, Heat
Transfer and Burnout Measurements." Centro Informazioni Studi
Esperienze, Milan, January 1, 1959.
.. [2] Awad, M. M., and Y. S. Muzychka. "Effective Property Models for
Homogeneous Two-Phase Flows." Experimental Thermal and Fluid Science 33,
no. 1 (October 1, 2008): 106-13.
.. [3] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and
Predictive Methods for Pressure Drop in Adiabatic, Condensing and
Boiling Mini/Micro-Channel Flows." International Journal of Heat and
Mass Transfer 77 (October 2014): 74-97.
doi:10.1016/j.ijheatmasstransfer.2014.04.035.
'''
return x*mug + (1. - x)*mul


def Lin_Kwok(x, mul, mug):
r'''Calculates a suggested definition for liquid-gas two-phase flow
viscosity in internal pipe flow according to the form in [1]_ and shown
in [2]_ and [3]_.
.. math::
\mu_m = \frac{\mu_l \mu_g}{\mu_g + x^{1.4}(\mu_l - \mu_g)}
Parameters
----------
x : float
Quality of the gas-liquid flow, [-]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
Returns
-------
mu_lg : float
Liquid-gas viscosity (**a suggested definition, potentially useful
for empirical work only!**) [Pa*s]
Notes
-----
This model converges to the liquid or gas viscosity as the quality
approaches either limits.
Examples
--------
>>> Lin_Kwok(x=0.4, mul=1E-3, mug=1E-5)
3.515119398126066e-05
References
----------
.. [1] Lin, S., C. C. K. Kwok, R. -Y. Li, Z. -H. Chen, and Z. -Y. Chen.
"Local Frictional Pressure Drop during Vaporization of R-12 through
Capillary Tubes." International Journal of Multiphase Flow 17, no. 1
(January 1, 1991): 95-102. doi:10.1016/0301-9322(91)90072-B.
.. [2] Awad, M. M., and Y. S. Muzychka. "Effective Property Models for
Homogeneous Two-Phase Flows." Experimental Thermal and Fluid Science 33,
no. 1 (October 1, 2008): 106-13.
'''
return mul*mug/(mug + x**1.4*(mul - mug))


def Fourar_Bories(x, mul, mug, rhol, rhog):
r'''Calculates a suggested definition for liquid-gas two-phase flow
viscosity in internal pipe flow according to the form in [1]_ and shown
in [2]_ and [3]_.
.. math::
\mu_m = \rho_m\left(\sqrt{x\nu_g} + \sqrt{(1-x)\nu_l}\right)^2
Parameters
----------
x : float
Quality of the gas-liquid flow, [-]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
rhol : float
Density of the liquid, [kg/m^3]
rhog : float
Density of the gas, [kg/m^3]
Returns
-------
mu_lg : float
Liquid-gas viscosity (**a suggested definition, potentially useful
for empirical work only!**) [Pa*s]
Notes
-----
This model converges to the liquid or gas viscosity as the quality
approaches either limits.
This was first expressed in the equalivalent form as follows:
.. math::
\mu_m = \rho_m\left(x\nu_g + (1-x)\nu_l + 2\sqrt{x(1-x)\nu_g\nu_l}
\right)
Examples
--------
>>> Fourar_Bories(x=0.4, mul=1E-3, mug=1E-5, rhol=850, rhog=1.2)
2.127617150298565e-05
References
----------
.. [1] Fourar, M., and S. Bories. "Experimental Study of Air-Water
Two-Phase Flow through a Fracture (Narrow Channel)." International
Journal of Multiphase Flow 21, no. 4 (August 1, 1995): 621-37.
doi:10.1016/0301-9322(95)00005-I.
.. [2] Awad, M. M., and Y. S. Muzychka. "Effective Property Models for
Homogeneous Two-Phase Flows." Experimental Thermal and Fluid Science 33,
no. 1 (October 1, 2008): 106-13.
.. [3] Aung, NZ, and T. Yuwono. "Evaluation of Mixture Viscosity Models in
the Prediction of Two-Phase Flow Pressure Drops." ASEAN Journal on
Science and Technology for Development 29, no. 2 (2012).
'''
rhom = 1./(x/rhog + (1. - x)/rhol)
nul = mul/rhol # = nu_mu_converter(rho=rhol, mu=mul)
nug = mug/rhog # = nu_mu_converter(rho=rhog, mu=mug)
return rhom*((x*nug)**0.5 + ((1. - x)*nul)**0.5)**2


def Duckler(x, mul, mug, rhol, rhog):
r'''Calculates a suggested definition for liquid-gas two-phase flow
viscosity in internal pipe flow according to the form in [1]_ and shown
in [2]_, [3]_, and [4]_.
.. math::
\mu_m = \frac{\frac{x\mu_g}{\rho_g} + \frac{(1-x)\mu_l}{\rho_l} }
{\frac{x}{\rho_g} + \frac{(1-x)}{\rho_l} }
Parameters
----------
x : float
Quality of the gas-liquid flow, [-]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
rhol : float
Density of the liquid, [kg/m^3]
rhog : float
Density of the gas, [kg/m^3]
Returns
-------
mu_lg : float
Liquid-gas viscosity (**a suggested definition, potentially useful
for empirical work only!**) [Pa*s]
Notes
-----
This model converges to the liquid or gas viscosity as the quality
approaches either limits.
This has also been expressed in the following form:
.. math::
\mu_m = \rho_m \left[x\left(\frac{\mu_g}{\rho_g}\right)
+ (1 - x)\left(\frac{\mu_l}{\rho_l}\right)\right]
According to the homogeneous definition of two-phase density.
Examples
--------
>>> Duckler(x=0.4, mul=1E-3, mug=1E-5, rhol=850, rhog=1.2)
1.2092040385066917e-05
References
----------
.. [1] Fourar, M., and S. Bories. "Experimental Study of Air-Water
Two-Phase Flow through a Fracture (Narrow Channel)." International
Journal of Multiphase Flow 21, no. 4 (August 1, 1995): 621-37.
doi:10.1016/0301-9322(95)00005-I.
.. [2] Awad, M. M., and Y. S. Muzychka. "Effective Property Models for
Homogeneous Two-Phase Flows." Experimental Thermal and Fluid Science 33,
no. 1 (October 1, 2008): 106-13.
.. [3] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and
Predictive Methods for Pressure Drop in Adiabatic, Condensing and
Boiling Mini/Micro-Channel Flows." International Journal of Heat and
Mass Transfer 77 (October 2014): 74-97.
doi:10.1016/j.ijheatmasstransfer.2014.04.035.
.. [4] Aung, NZ, and T. Yuwono. "Evaluation of Mixture Viscosity Models in
the Prediction of Two-Phase Flow Pressure Drops." ASEAN Journal on
Science and Technology for Development 29, no. 2 (2012).
'''
return (x*mug/rhog + (1. - x)*mul/rhol)/(x/rhog + (1. - x)/rhol)

Loading

0 comments on commit 1f1d416

Please sign in to comment.