-
Notifications
You must be signed in to change notification settings - Fork 84
/
ml_monadStoreScript.sml
219 lines (190 loc) · 5.4 KB
/
ml_monadStoreScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
(*
This file defines theorems and lemma used in the ml_monadStoreLib
*)
open preamble evaluateTheory semanticPrimitivesTheory
open set_sepTheory cfTheory cfStoreTheory cfTacticsLib evaluateTheory
open cfHeapsBaseTheory cfAppTheory ml_monad_translatorBaseTheory
open packLib
val _ = new_theory "ml_monadStore"
Theorem HCOND_EXTRACT =
cfLetAutoTheory.HCOND_EXTRACT
Theorem SEP_EXISTS_SEPARATE =
List.hd(SPEC_ALL SEP_CLAUSES |> CONJUNCTS) |> GSYM |> GEN_ALL
Theorem SEP_EXISTS_INWARD =
List.nth(SPEC_ALL SEP_CLAUSES |> CONJUNCTS, 1) |> GSYM |> GEN_ALL
Theorem ALLOCATE_ARRAY_evaluate:
!env s n xname xv.
(nsLookup env.v (Short xname) = SOME xv) ==>
eval_rel s env (App Aalloc [Lit (IntLit &n); Var (Short xname)])
(s with refs := s.refs ++ [Varray (REPLICATE n xv)])
(Loc (LENGTH s.refs))
Proof
rw[evaluate_def, do_app_def, store_alloc_def, ml_progTheory.eval_rel_def]
\\ rw[state_component_equality]
QED
Theorem ALLOCATE_EMPTY_RARRAY_evaluate:
!env s.
eval_rel s env (App Opref [App AallocEmpty [Con NONE []]])
(s with refs := s.refs ++ [Varray []] ++ [Refv (Loc (LENGTH s.refs))])
(Loc (LENGTH s.refs + 1))
Proof
rw[evaluate_def, do_app_def, do_opapp_def, do_con_check_def, build_conv_def,
store_alloc_def,state_component_equality, ml_progTheory.eval_rel_def]
QED
Theorem LIST_REL_REPLICATE:
!n TYPE x v. TYPE x v ==> LIST_REL TYPE (REPLICATE n x) (REPLICATE n v)
Proof
rw[] \\ Cases_on `n`
\\ metis_tac[LIST_REL_REPLICATE_same]
QED
Theorem GC_INWARDS:
GC * A = A * GC
Proof
SIMP_TAC std_ss [STAR_COMM]
QED
Theorem GC_DUPLICATE_0:
H * GC = H * GC * GC
Proof
rw[GSYM STAR_ASSOC, GC_STAR_GC]
QED
Theorem GC_DUPLICATE_1:
A * (B * GC * C) = A * GC * (B * GC * C)
Proof
SIMP_TAC std_ss [GSYM STAR_ASSOC, GC_INWARDS, GC_STAR_GC]
QED
Theorem GC_DUPLICATE_2:
A * (B * GC) = A * GC * (B * GC)
Proof
ASSUME_TAC (Thm.INST [``C : hprop`` |-> ``emp : hprop``] GC_DUPLICATE_1)
\\ FULL_SIMP_TAC std_ss [GSYM STAR_ASSOC, SEP_CLAUSES]
QED
Theorem GC_DUPLICATE_3:
A * GC * B = GC * (A * GC * B)
Proof
SIMP_TAC std_ss [GSYM STAR_ASSOC, GC_INWARDS, GC_STAR_GC]
QED
Theorem store2heap_aux_decompose_store1:
A (store2heap_aux n a) ==>
B (store2heap_aux (n + LENGTH a) b) ==>
(A * B) (store2heap_aux n (a ++ b))
Proof
rw[STAR_def, SPLIT_def]
\\ instantiate
\\ rw[Once UNION_COMM]
>- fs[store2heap_aux_append_many]
\\ fs[store2heap_aux_DISJOINT]
QED
Theorem store2heap_aux_decompose_store2:
A (store2heap_aux n [a]) ==>
B (store2heap_aux (n + 1) b) ==>
(A * B) (store2heap_aux n (a::b))
Proof
rw[]
\\ `a::b = [a]++b` by fs[]
\\ POP_ASSUM(fn x => PURE_ONCE_REWRITE_TAC[x])
\\ irule store2heap_aux_decompose_store1
\\ fs[]
QED
Theorem cons_to_append:
a::b::c = [a; b]++c
Proof
fs[]
QED
Theorem append_empty:
a = a ++ []
Proof
fs[]
QED
Theorem H_STAR_GC_SAT_IMP:
H s ==> (H * GC) s
Proof
rw[STAR_def]
\\ qexists_tac `s`
\\ qexists_tac `{}`
\\ rw[SPLIT_emp2, SAT_GC]
QED
Theorem store2heap_REF_SAT:
((Loc l) ~~> v) (store2heap_aux l [Refv v])
Proof
fs[store2heap_aux_def]
>> fs[REF_def, SEP_EXISTS_THM, HCOND_EXTRACT, cell_def, one_def]
QED
Theorem store2heap_eliminate_ffi_thm:
H (store2heap s.refs) ==> (GC * H) (st2heap (p:'ffi ffi_proj) s)
Proof
rw[]
\\ Cases_on `p`
\\ fs[st2heap_def, STAR_def]
\\ qexists_tac `ffi2heap (q, r) s.ffi`
\\ qexists_tac `store2heap s.refs`
\\ fs[SAT_GC]
\\ PURE_ONCE_REWRITE_TAC[SPLIT_SYM]
\\ fs[st2heap_SPLIT_FFI]
QED
Theorem rarray_exact_thm:
((l = l' + 1) /\ (n = l')) ==>
RARRAY (Loc l) av (store2heap_aux n [Varray av; Refv (Loc l')])
Proof
rw[]
\\ rw[RARRAY_def]
\\ rw[SEP_EXISTS_THM]
\\ qexists_tac `Loc l'`
\\ PURE_REWRITE_TAC[Once STAR_COMM]
\\ `[Varray av; Refv (Loc l')] = [Varray av] ++ [Refv (Loc l')]` by fs[]
\\ POP_ASSUM(fn x => PURE_REWRITE_TAC[x])
\\ irule store2heap_aux_decompose_store1
\\ conj_tac
>-(rw[ARRAY_def, SEP_EXISTS_THM, HCOND_EXTRACT, cell_def, one_def, store2heap_aux_def])
\\ rw[REF_def, SEP_EXISTS_THM, HCOND_EXTRACT, cell_def, one_def, store2heap_aux_def]
QED
Theorem farray_exact_thm:
(n = l) ==>
ARRAY (Loc l) av (store2heap_aux n [Varray av])
Proof
rw[ARRAY_def, SEP_EXISTS_THM, HCOND_EXTRACT, cell_def, one_def, store2heap_aux_def]
QED
Theorem eliminate_inherited_references_thm:
!a b. H (store2heap_aux (LENGTH a) b) ==>
(GC * H) (store2heap_aux 0 (a++b))
Proof
rw[]
\\ fs[STAR_def]
\\ instantiate
\\ qexists_tac `store2heap_aux 0 a`
\\ fs[SPEC_ALL store2heap_aux_SPLIT |> Thm.INST [``n:num`` |-> ``0:num``]
|> SIMP_RULE arith_ss [], SAT_GC]
QED
Theorem eliminate_substore_thm:
(H1 * GC * H2) (store2heap_aux (n + LENGTH a) b) ==>
(H1 * GC * H2) (store2heap_aux n (a++b))
Proof
rw[]
\\ PURE_ONCE_REWRITE_TAC[GC_DUPLICATE_3]
\\ rw[Once STAR_def]
\\ qexists_tac `store2heap_aux n a`
\\ qexists_tac `store2heap_aux (n + LENGTH a) b`
\\ simp[SAT_GC, store2heap_aux_SPLIT]
QED
Theorem eliminate_store_elem_thm:
(H1 * GC * H2) (store2heap_aux (n + 1) b) ==>
(H1 * GC * H2) (store2heap_aux n (a::b))
Proof
rw[]
\\ PURE_ONCE_REWRITE_TAC[GC_DUPLICATE_3]
\\ rw[Once STAR_def]
\\ PURE_ONCE_REWRITE_TAC[CONS_APPEND]
\\ qexists_tac `store2heap_aux n [a]`
\\ qexists_tac `store2heap_aux (n + (LENGTH [a])) b`
\\ simp[SAT_GC, store2heap_aux_SPLIT]
QED
Theorem H_STAR_empty:
H * emp = H
Proof
rw[SEP_CLAUSES]
QED
Theorem H_STAR_TRUE:
(H * &T = H) /\ (&T * H = H)
Proof
fs[SEP_CLAUSES]
QED
val _ = export_theory();