-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
eval.py
193 lines (155 loc) · 5.85 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# System libs
import os
import time
import argparse
from distutils.version import LooseVersion
# Numerical libs
import numpy as np
import torch
import torch.nn as nn
from scipy.io import loadmat
# Our libs
from mit_semseg.config import cfg
from mit_semseg.dataset import ValDataset
from mit_semseg.models import ModelBuilder, SegmentationModule
from mit_semseg.utils import AverageMeter, colorEncode, accuracy, intersectionAndUnion, setup_logger
from mit_semseg.lib.nn import user_scattered_collate, async_copy_to
from mit_semseg.lib.utils import as_numpy
from PIL import Image
from tqdm import tqdm
colors = loadmat('data/color150.mat')['colors']
def visualize_result(data, pred, dir_result):
(img, seg, info) = data
# segmentation
seg_color = colorEncode(seg, colors)
# prediction
pred_color = colorEncode(pred, colors)
# aggregate images and save
im_vis = np.concatenate((img, seg_color, pred_color),
axis=1).astype(np.uint8)
img_name = info.split('/')[-1]
Image.fromarray(im_vis).save(os.path.join(dir_result, img_name.replace('.jpg', '.png')))
def evaluate(segmentation_module, loader, cfg, gpu):
acc_meter = AverageMeter()
intersection_meter = AverageMeter()
union_meter = AverageMeter()
time_meter = AverageMeter()
segmentation_module.eval()
pbar = tqdm(total=len(loader))
for batch_data in loader:
# process data
batch_data = batch_data[0]
seg_label = as_numpy(batch_data['seg_label'][0])
img_resized_list = batch_data['img_data']
torch.cuda.synchronize()
tic = time.perf_counter()
with torch.no_grad():
segSize = (seg_label.shape[0], seg_label.shape[1])
scores = torch.zeros(1, cfg.DATASET.num_class, segSize[0], segSize[1])
scores = async_copy_to(scores, gpu)
for img in img_resized_list:
feed_dict = batch_data.copy()
feed_dict['img_data'] = img
del feed_dict['img_ori']
del feed_dict['info']
feed_dict = async_copy_to(feed_dict, gpu)
# forward pass
scores_tmp = segmentation_module(feed_dict, segSize=segSize)
scores = scores + scores_tmp / len(cfg.DATASET.imgSizes)
_, pred = torch.max(scores, dim=1)
pred = as_numpy(pred.squeeze(0).cpu())
torch.cuda.synchronize()
time_meter.update(time.perf_counter() - tic)
# calculate accuracy
acc, pix = accuracy(pred, seg_label)
intersection, union = intersectionAndUnion(pred, seg_label, cfg.DATASET.num_class)
acc_meter.update(acc, pix)
intersection_meter.update(intersection)
union_meter.update(union)
# visualization
if cfg.VAL.visualize:
visualize_result(
(batch_data['img_ori'], seg_label, batch_data['info']),
pred,
os.path.join(cfg.DIR, 'result')
)
pbar.update(1)
# summary
iou = intersection_meter.sum / (union_meter.sum + 1e-10)
for i, _iou in enumerate(iou):
print('class [{}], IoU: {:.4f}'.format(i, _iou))
print('[Eval Summary]:')
print('Mean IoU: {:.4f}, Accuracy: {:.2f}%, Inference Time: {:.4f}s'
.format(iou.mean(), acc_meter.average()*100, time_meter.average()))
def main(cfg, gpu):
torch.cuda.set_device(gpu)
# Network Builders
net_encoder = ModelBuilder.build_encoder(
arch=cfg.MODEL.arch_encoder.lower(),
fc_dim=cfg.MODEL.fc_dim,
weights=cfg.MODEL.weights_encoder)
net_decoder = ModelBuilder.build_decoder(
arch=cfg.MODEL.arch_decoder.lower(),
fc_dim=cfg.MODEL.fc_dim,
num_class=cfg.DATASET.num_class,
weights=cfg.MODEL.weights_decoder,
use_softmax=True)
crit = nn.NLLLoss(ignore_index=-1)
segmentation_module = SegmentationModule(net_encoder, net_decoder, crit)
# Dataset and Loader
dataset_val = ValDataset(
cfg.DATASET.root_dataset,
cfg.DATASET.list_val,
cfg.DATASET)
loader_val = torch.utils.data.DataLoader(
dataset_val,
batch_size=cfg.VAL.batch_size,
shuffle=False,
collate_fn=user_scattered_collate,
num_workers=5,
drop_last=True)
segmentation_module.cuda()
# Main loop
evaluate(segmentation_module, loader_val, cfg, gpu)
print('Evaluation Done!')
if __name__ == '__main__':
assert LooseVersion(torch.__version__) >= LooseVersion('0.4.0'), \
'PyTorch>=0.4.0 is required'
parser = argparse.ArgumentParser(
description="PyTorch Semantic Segmentation Validation"
)
parser.add_argument(
"--cfg",
default="config/ade20k-resnet50dilated-ppm_deepsup.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"--gpu",
default=0,
help="gpu to use"
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
cfg.merge_from_file(args.cfg)
cfg.merge_from_list(args.opts)
# cfg.freeze()
logger = setup_logger(distributed_rank=0) # TODO
logger.info("Loaded configuration file {}".format(args.cfg))
logger.info("Running with config:\n{}".format(cfg))
# absolute paths of model weights
cfg.MODEL.weights_encoder = os.path.join(
cfg.DIR, 'encoder_' + cfg.VAL.checkpoint)
cfg.MODEL.weights_decoder = os.path.join(
cfg.DIR, 'decoder_' + cfg.VAL.checkpoint)
assert os.path.exists(cfg.MODEL.weights_encoder) and \
os.path.exists(cfg.MODEL.weights_decoder), "checkpoint does not exitst!"
if not os.path.isdir(os.path.join(cfg.DIR, "result")):
os.makedirs(os.path.join(cfg.DIR, "result"))
main(cfg, args.gpu)