-
Notifications
You must be signed in to change notification settings - Fork 159
/
Copy pathmodel_transfer.py
32 lines (27 loc) · 1.29 KB
/
model_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# This file used to transfer a pre-trained model's
# weight(it's network architecture may be different from ours) to our model
import tensorflow as tf
import os
def restore_from_source(sess,source_path):
s_saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(source_path)
if ckpt and ckpt.model_checkpoint_path:
s_saver.restore(sess, ckpt.model_checkpoint_path)
print("restore and continue training!")
return sess
else:
raise IOError("Not found source model")
def _init_all_uninitialized_variables(sess):
uninitialized_variables = sess.run(tf.report_uninitialized_variables())
init_op = tf.variables_initializer([v for v in tf.global_variables() if v.name.split(':')[0] in set(uninitialized_variables)])
sess.run(init_op)
init_op = tf.variables_initializer([v for v in tf.local_variables() if v.name.split(':')[0] in set(uninitialized_variables)])
sess.run(init_op)
def save_to_target(sess,target_path,max_to_keep=5):
t_saver = tf.train.Saver(max_to_keep=max_to_keep)
_init_all_uninitialized_variables(sess)
if not os.path.exists(target_path):
os.mkdir(target_path)
save_path = t_saver.save(sess, target_path+"model.ckpt",global_step=0)
print("Model saved in file: %s" % save_path)
return sess,t_saver