|
| 1 | +import os |
| 2 | +# os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
| 3 | +os.environ['TL_BACKEND'] = 'torch' |
| 4 | +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' |
| 5 | +# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR |
| 6 | +import tensorlayerx as tlx |
| 7 | +from gammagl.models import FatraGNNModel |
| 8 | +import argparse |
| 9 | +import numpy as np |
| 10 | +from tensorlayerx.model import TrainOneStep, WithLoss |
| 11 | +from sklearn.metrics import roc_auc_score |
| 12 | +import scipy.sparse as sp |
| 13 | +import yaml |
| 14 | +from gammagl.datasets import Bail |
| 15 | +from gammagl.datasets import Credit |
| 16 | + |
| 17 | + |
| 18 | +def fair_metric(pred, labels, sens): |
| 19 | + idx_s0 = sens == 0 |
| 20 | + idx_s1 = sens == 1 |
| 21 | + idx_s0_y1 = np.bitwise_and(idx_s0, labels == 1) |
| 22 | + idx_s1_y1 = np.bitwise_and(idx_s1, labels == 1) |
| 23 | + parity = abs(sum(pred[idx_s0]) / sum(idx_s0) - |
| 24 | + sum(pred[idx_s1]) / sum(idx_s1)) |
| 25 | + equality = abs(sum(pred[idx_s0_y1]) / sum(idx_s0_y1) - |
| 26 | + sum(pred[idx_s1_y1]) / sum(idx_s1_y1)) |
| 27 | + return parity.item(), equality.item() |
| 28 | + |
| 29 | + |
| 30 | +def evaluate_ged3(net, x, edge_index, y, test_mask, sens): |
| 31 | + net.set_eval() |
| 32 | + flag = 0 |
| 33 | + output = net(x, edge_index, flag) |
| 34 | + pred_test = tlx.cast(tlx.squeeze(output[test_mask], axis=-1) > 0, y.dtype) |
| 35 | + |
| 36 | + acc_nums_test = (pred_test == y[test_mask]) |
| 37 | + accs = np.sum(tlx.convert_to_numpy(acc_nums_test))/np.sum(tlx.convert_to_numpy(test_mask)) |
| 38 | + |
| 39 | + auc_rocs = roc_auc_score(tlx.convert_to_numpy(y[test_mask]), tlx.convert_to_numpy(output[test_mask])) |
| 40 | + paritys, equalitys = fair_metric(tlx.convert_to_numpy(pred_test), tlx.convert_to_numpy(y[test_mask]), tlx.convert_to_numpy(sens[test_mask])) |
| 41 | + |
| 42 | + return accs, auc_rocs, paritys, equalitys |
| 43 | + |
| 44 | + |
| 45 | +class DicLoss(WithLoss): |
| 46 | + def __init__(self, net, loss_fn): |
| 47 | + super(DicLoss, self).__init__(backbone=net, loss_fn=loss_fn) |
| 48 | + |
| 49 | + def forward(self, data, label): |
| 50 | + output = self.backbone_network(data['x'], data['edge_index'], data['flag']) |
| 51 | + loss = tlx.losses.binary_cross_entropy(tlx.squeeze(output, axis=-1), tlx.cast(data['sens'], dtype=tlx.float32)) |
| 52 | + return loss |
| 53 | + |
| 54 | + |
| 55 | +class EncClaLoss(WithLoss): |
| 56 | + def __init__(self, net, loss_fn): |
| 57 | + super(EncClaLoss, self).__init__(backbone=net, loss_fn=loss_fn) |
| 58 | + |
| 59 | + def forward(self, data, label): |
| 60 | + output = self.backbone_network(data['x'], data['edge_index'], data['flag']) |
| 61 | + y_train = tlx.cast(tlx.expand_dims(label[data['train_mask']], axis=1), dtype=tlx.float32) |
| 62 | + loss = tlx.losses.binary_cross_entropy(output[data['train_mask']], y_train) |
| 63 | + return loss |
| 64 | + |
| 65 | + |
| 66 | +class EncLoss(WithLoss): |
| 67 | + def __init__(self, net, loss_fn): |
| 68 | + super(EncLoss, self).__init__(backbone=net, loss_fn=loss_fn) |
| 69 | + |
| 70 | + def forward(self, data, label): |
| 71 | + output = self.backbone_network(data['x'], data['edge_index'], data['flag']) |
| 72 | + loss = tlx.losses.mean_squared_error(output, 0.5 * tlx.ones_like(output)) |
| 73 | + return loss |
| 74 | + |
| 75 | + |
| 76 | +class EdtLoss(WithLoss): |
| 77 | + def __init__(self, net, loss_fn): |
| 78 | + super(EdtLoss, self).__init__(backbone=net, loss_fn=loss_fn) |
| 79 | + |
| 80 | + def forward(self, data, label): |
| 81 | + output = self.backbone_network(data['x'], data['edge_index'], data['flag']) |
| 82 | + loss = -tlx.abs(tlx.reduce_sum(output[data['train_mask']][data['t_idx_s0_y1']])) / tlx.reduce_sum(tlx.cast(data['t_idx_s0_y1'], dtype=tlx.float32)) - tlx.reduce_sum(output[data['train_mask']][data['t_idx_s1_y1']]) / tlx.reduce_sum(tlx.cast(data['t_idx_s1_y1'], dtype=tlx.float32)) |
| 83 | + |
| 84 | + return loss |
| 85 | + |
| 86 | + |
| 87 | +class AliLoss(WithLoss): |
| 88 | + def __init__(self, net, loss_fn): |
| 89 | + super(AliLoss, self).__init__(backbone=net, loss_fn=loss_fn) |
| 90 | + |
| 91 | + def forward(self, data, label): |
| 92 | + output = self.backbone_network(data['x'], data['edge_index'], data['flag']) |
| 93 | + h1 = output['h1'] |
| 94 | + h2 = output['h2'] |
| 95 | + idx_s0_y0 = data['idx_s0_y0'] |
| 96 | + idx_s1_y0 = data['idx_s1_y0'] |
| 97 | + idx_s0_y1 = data['idx_s0_y1'] |
| 98 | + idx_s1_y1 = data['idx_s1_y1'] |
| 99 | + node_num = data['x'].shape[0] |
| 100 | + loss_align = - node_num / (tlx.reduce_sum(tlx.cast(idx_s0_y0, dtype=tlx.float32))) * tlx.reduce_mean(tlx.matmul(h1[idx_s0_y0], tlx.transpose(h2[idx_s0_y0]))) \ |
| 101 | + - node_num / (tlx.reduce_sum(tlx.cast(idx_s0_y1, dtype=tlx.float32))) * tlx.reduce_mean(tlx.matmul(h1[idx_s0_y1], tlx.transpose(h2[idx_s0_y1]))) \ |
| 102 | + - node_num / (tlx.reduce_sum(tlx.cast(idx_s1_y0, dtype=tlx.float32))) * tlx.reduce_mean(tlx.matmul(h1[idx_s1_y0], tlx.transpose(h2[idx_s1_y0]))) \ |
| 103 | + - node_num / (tlx.reduce_sum(tlx.cast(idx_s1_y1, dtype=tlx.float32))) * tlx.reduce_mean(tlx.matmul(h1[idx_s1_y1], tlx.transpose(h2[idx_s1_y1]))) |
| 104 | + |
| 105 | + loss = loss_align * 0.01 |
| 106 | + return loss |
| 107 | + |
| 108 | + |
| 109 | +def main(args): |
| 110 | + |
| 111 | + # load datasets |
| 112 | + if str.lower(args.dataset) not in ['bail', 'credit', 'pokec']: |
| 113 | + raise ValueError('Unknown dataset: {}'.format(args.dataset)) |
| 114 | + |
| 115 | + if args.dataset == 'bail': |
| 116 | + dataset = Bail(args.dataset_path, args.dataset) |
| 117 | + |
| 118 | + elif args.dataset == 'credit': |
| 119 | + dataset = Credit(args.dataset_path, args.dataset) |
| 120 | + |
| 121 | + graphs = dataset.data |
| 122 | + data = { |
| 123 | + 'x':graphs[0].x, |
| 124 | + 'y': graphs[0].y, |
| 125 | + 'edge_index': {'edge_index': graphs[0].edge_index}, |
| 126 | + 'sens': graphs[0].sens, |
| 127 | + 'train_mask': graphs[0].train_mask, |
| 128 | + } |
| 129 | + data_test = [] |
| 130 | + for i in range(1, len(graphs)): |
| 131 | + data_tem = { |
| 132 | + 'x':graphs[i].x, |
| 133 | + 'y': graphs[i].y, |
| 134 | + 'edge_index': graphs[i].edge_index, |
| 135 | + 'sens': graphs[i].sens, |
| 136 | + 'test_mask': graphs[i].train_mask | graphs[i].val_mask | graphs[i].test_mask, |
| 137 | + } |
| 138 | + data_test.append(data_tem) |
| 139 | + dataset = None |
| 140 | + graphs = None |
| 141 | + args.num_features, args.num_classes = data['x'].shape[1], len(np.unique(tlx.convert_to_numpy(data['y']))) - 1 |
| 142 | + args.test_set_num = len(data_test) |
| 143 | + |
| 144 | + t_idx_s0 = data['sens'][data['train_mask']] == 0 |
| 145 | + t_idx_s1 = data['sens'][data['train_mask']] == 1 |
| 146 | + t_idx_s0_y1 = tlx.logical_and(t_idx_s0, data['y'][data['train_mask']] == 1) |
| 147 | + t_idx_s1_y1 = tlx.logical_and(t_idx_s1, data['y'][data['train_mask']] == 1) |
| 148 | + |
| 149 | + idx_s0 = data['sens'] == 0 |
| 150 | + idx_s1 = data['sens'] == 1 |
| 151 | + idx_s0_y1 = tlx.logical_and(idx_s0, data['y'] == 1) |
| 152 | + idx_s1_y1 = tlx.logical_and(idx_s1, data['y'] == 1) |
| 153 | + idx_s0_y0 = tlx.logical_and(idx_s0, data['y'] == 0) |
| 154 | + idx_s1_y0 = tlx.logical_and(idx_s1, data['y'] == 0) |
| 155 | + |
| 156 | + data['idx_s0_y0'] = idx_s0_y0 |
| 157 | + data['idx_s1_y0'] = idx_s1_y0 |
| 158 | + data['idx_s0_y1'] = idx_s0_y1 |
| 159 | + data['idx_s1_y1'] = idx_s1_y1 |
| 160 | + data['t_idx_s0_y1'] = t_idx_s0_y1 |
| 161 | + data['t_idx_s1_y1'] = t_idx_s1_y1 |
| 162 | + |
| 163 | + edge_index_np = tlx.convert_to_numpy(data['edge_index']['edge_index']) |
| 164 | + adj = sp.coo_matrix((np.ones(data['edge_index']['edge_index'].shape[1]), (edge_index_np[0, :], edge_index_np[1, :])), |
| 165 | + shape=(data['x'].shape[0], data['x'].shape[0]), |
| 166 | + dtype=np.float32) |
| 167 | + A2 = adj.dot(adj) |
| 168 | + A2 = A2.toarray() |
| 169 | + A2_edge = tlx.convert_to_tensor(np.vstack((A2.nonzero()[0], A2.nonzero()[1]))) |
| 170 | + |
| 171 | + net = FatraGNNModel(args) |
| 172 | + |
| 173 | + dic_loss_func = DicLoss(net, tlx.losses.binary_cross_entropy) |
| 174 | + enc_cla_loss_func = EncClaLoss(net, tlx.losses.binary_cross_entropy) |
| 175 | + enc_loss_func = EncLoss(net, tlx.losses.binary_cross_entropy) |
| 176 | + edt_loss_func = EdtLoss(net, tlx.losses.binary_cross_entropy) |
| 177 | + ali_loss_func = AliLoss(net, tlx.losses.binary_cross_entropy) |
| 178 | + |
| 179 | + dic_opt = tlx.optimizers.Adam(lr=args.d_lr, weight_decay=args.d_wd) |
| 180 | + dic_train_one_step = TrainOneStep(dic_loss_func, dic_opt, net.discriminator.trainable_weights) |
| 181 | + |
| 182 | + enc_cla_opt = tlx.optimizers.Adam(lr=args.c_lr, weight_decay=args.c_wd) |
| 183 | + enc_cla_train_one_step = TrainOneStep(enc_cla_loss_func, enc_cla_opt, net.encoder.trainable_weights+net.classifier.trainable_weights) |
| 184 | + |
| 185 | + enc_opt = tlx.optimizers.Adam(lr=args.e_lr, weight_decay=args.e_wd) |
| 186 | + enc_train_one_step = TrainOneStep(enc_loss_func, enc_opt, net.encoder.trainable_weights) |
| 187 | + |
| 188 | + edt_opt = tlx.optimizers.Adam(lr=args.g_lr, weight_decay=args.g_wd) |
| 189 | + edt_train_one_step = TrainOneStep(edt_loss_func, edt_opt, net.graphEdit.trainable_weights) |
| 190 | + |
| 191 | + ali_opt = tlx.optimizers.Adam(lr=args.e_lr, weight_decay=args.e_wd) |
| 192 | + ali_train_one_step = TrainOneStep(ali_loss_func, ali_opt, net.encoder.trainable_weights) |
| 193 | + |
| 194 | + tlx.set_seed(args.seed) |
| 195 | + net.set_train() |
| 196 | + for epoch in range(0, args.epochs): |
| 197 | + print(f"======={epoch}=======") |
| 198 | + # train discriminator to recognize the sensitive group |
| 199 | + data['flag'] = 1 |
| 200 | + for epoch_d in range(0, args.dic_epochs): |
| 201 | + dic_loss = dic_train_one_step(data=data, label=data['y']) |
| 202 | + |
| 203 | + # train classifier and encoder |
| 204 | + data['flag'] = 2 |
| 205 | + for epoch_c in range(0, args.cla_epochs): |
| 206 | + enc_cla_loss = enc_cla_train_one_step(data=data, label=data['y']) |
| 207 | + |
| 208 | + # train encoder to fool discriminator |
| 209 | + data['flag'] = 3 |
| 210 | + for epoch_g in range(0, args.g_epochs): |
| 211 | + enc_loss = enc_train_one_step(data=data, label=data['y']) |
| 212 | + |
| 213 | + # train generator |
| 214 | + data['flag'] = 4 |
| 215 | + if epoch > args.start: |
| 216 | + if epoch % 10 == 0: |
| 217 | + if epoch % 20 == 0: |
| 218 | + data['edge_index']['edge_index2'] = net.graphEdit.modify_structure1(data['edge_index']['edge_index'], A2_edge, data['sens'], data['x'].shape[0], args.drope_rate) |
| 219 | + else: |
| 220 | + data['edge_index']['edge_index2'] = net.graphEdit.modify_structure2(data['edge_index']['edge_index'], A2_edge, data['sens'], data['x'].shape[0], args.drope_rate) |
| 221 | + else: |
| 222 | + data['edge_index']['edge_index2'] = data['edge_index']['edge_index'] |
| 223 | + |
| 224 | + for epoch_g in range(0, args.dtb_epochs): |
| 225 | + edt_loss = edt_train_one_step(data=data, label=data['y']) |
| 226 | + |
| 227 | + # shift align |
| 228 | + data['flag'] = 5 |
| 229 | + if epoch > args.start: |
| 230 | + for epoch_a in range(0, args.a_epochs): |
| 231 | + aliloss = ali_train_one_step(data=data, label=data['y']) |
| 232 | + |
| 233 | + acc = np.zeros([args.test_set_num]) |
| 234 | + auc_roc = np.zeros([args.test_set_num]) |
| 235 | + parity = np.zeros([args.test_set_num]) |
| 236 | + equality = np.zeros([args.test_set_num]) |
| 237 | + net.set_eval() |
| 238 | + for i in range(args.test_set_num): |
| 239 | + data_tem = data_test[i] |
| 240 | + acc[i],auc_roc[i], parity[i], equality[i] = evaluate_ged3(net, data_tem['x'], data_tem['edge_index'], data_tem['y'], data_tem['test_mask'], data_tem['sens']) |
| 241 | + return acc, auc_roc, parity, equality |
| 242 | + |
| 243 | +if __name__ == '__main__': |
| 244 | + parser = argparse.ArgumentParser() |
| 245 | + parser.add_argument('--dataset', type=str, default='bail') |
| 246 | + parser.add_argument('--start', type=int, default=50) |
| 247 | + parser.add_argument('--epochs', type=int, default=400) |
| 248 | + parser.add_argument('--dic_epochs', type=int, default=5) |
| 249 | + parser.add_argument('--dtb_epochs', type=int, default=5) |
| 250 | + parser.add_argument('--cla_epochs', type=int, default=12) |
| 251 | + parser.add_argument('--a_epochs', type=int, default=2) |
| 252 | + parser.add_argument('--g_epochs', type=int, default=5) |
| 253 | + parser.add_argument('--g_lr', type=float, default=0.05) |
| 254 | + parser.add_argument('--g_wd', type=float, default=0.01) |
| 255 | + parser.add_argument('--d_lr', type=float, default=0.001) |
| 256 | + parser.add_argument('--d_wd', type=float, default=0) |
| 257 | + parser.add_argument('--c_lr', type=float, default=0.001) |
| 258 | + parser.add_argument('--c_wd', type=float, default=0.01) |
| 259 | + parser.add_argument('--e_lr', type=float, default=0.005) |
| 260 | + parser.add_argument('--e_wd', type=float, default=0) |
| 261 | + parser.add_argument('--hidden', type=int, default=128) |
| 262 | + parser.add_argument('--seed', type=int, default=3) |
| 263 | + parser.add_argument('--top_k', type=int, default=10) |
| 264 | + parser.add_argument('--gpu', type=int, default=1) |
| 265 | + parser.add_argument('--drope_rate', type=float, default=0.1) |
| 266 | + parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset") |
| 267 | + |
| 268 | + args = parser.parse_args() |
| 269 | + |
| 270 | + if args.gpu >= 0: |
| 271 | + tlx.set_device("GPU", args.gpu) |
| 272 | + else: |
| 273 | + tlx.set_device("CPU") |
| 274 | + args.device = f'cuda:{args.gpu}' |
| 275 | + |
| 276 | + |
| 277 | + fileNamePath = os.path.split(os.path.realpath(__file__))[0] |
| 278 | + yamlPath = os.path.join(fileNamePath, 'config.yaml') |
| 279 | + with open(yamlPath, 'r', encoding='utf-8') as f: |
| 280 | + cont = f.read() |
| 281 | + config_dict = yaml.safe_load(cont)[args.dataset] |
| 282 | + for key, value in config_dict.items(): |
| 283 | + args.__setattr__(key, value) |
| 284 | + |
| 285 | + print(args) |
| 286 | + acc, auc_roc, parity, equality = main(args) |
| 287 | + |
| 288 | + for i in range(args.test_set_num): |
| 289 | + print("===========test{}============".format(i+1)) |
| 290 | + print('Acc: ', acc.T[i]) |
| 291 | + print('auc_roc: ', auc_roc.T[i]) |
| 292 | + print('parity: ', parity.T[i]) |
| 293 | + print('equality: ', equality.T[i]) |
0 commit comments