diff --git a/Code/Day 1_Data PreProcessing.md b/Code/Day 1_Data PreProcessing.md index 569d0e6..0505d06 100644 --- a/Code/Day 1_Data PreProcessing.md +++ b/Code/Day 1_Data PreProcessing.md @@ -19,8 +19,8 @@ Y = dataset.iloc[ : , 3].values ``` ## Step 3: Handling the missing data ```python -from sklearn.preprocessing import Imputer -imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0) +from sklearn.preprocessing import SimpleImputer +imputer = SimpleImputer(missing_values=np.nan, strategy='mean') imputer = imputer.fit(X[ : , 1:3]) X[ : , 1:3] = imputer.transform(X[ : , 1:3]) ``` @@ -39,7 +39,7 @@ Y = labelencoder_Y.fit_transform(Y) ``` ## Step 5: Splitting the datasets into training sets and Test sets ```python -from sklearn.cross_validation import train_test_split +from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0) ```