-
Notifications
You must be signed in to change notification settings - Fork 666
/
Copy pathcocob.py
93 lines (79 loc) · 4.15 KB
/
cocob.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright 2017 Francesco Orabona. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
COntinuos COin Betting (COCOB) optimizer
See 'Training Deep Networks without Learning Rates Through Coin Betting'
https://arxiv.org/abs/1705.07795
"""
from tensorflow.python.framework import ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.framework import constant_op
from tensorflow.python.training.optimizer import Optimizer
import tensorflow as tf
class COCOB(Optimizer):
def __init__(self, alpha=100, use_locking=False, name='COCOB'):
'''
constructs a new COCOB optimizer
'''
super(COCOB, self).__init__(use_locking, name)
self._alpha = alpha
def _create_slots(self, var_list):
for v in var_list:
with ops.colocate_with(v):
gradients_sum = constant_op.constant(0,
shape=v.get_shape(),
dtype=v.dtype.base_dtype)
grad_norm_sum = constant_op.constant(0,
shape=v.get_shape(),
dtype=v.dtype.base_dtype)
L = constant_op.constant(1e-8, shape=v.get_shape(), dtype=v.dtype.base_dtype)
tilde_w = constant_op.constant(0.0, shape=v.get_shape(), dtype=v.dtype.base_dtype)
reward = constant_op.constant(0.0, shape=v.get_shape(), dtype=v.dtype.base_dtype)
self._get_or_make_slot(v, L, "L", self._name)
self._get_or_make_slot(v, grad_norm_sum, "grad_norm_sum", self._name)
self._get_or_make_slot(v, gradients_sum, "gradients_sum", self._name)
self._get_or_make_slot(v, tilde_w, "tilde_w", self._name)
self._get_or_make_slot(v, reward, "reward", self._name)
def _apply_dense(self, grad, var):
gradients_sum = self.get_slot(var, "gradients_sum")
grad_norm_sum = self.get_slot(var, "grad_norm_sum")
tilde_w = self.get_slot(var, "tilde_w")
L = self.get_slot(var, "L")
reward = self.get_slot(var, "reward")
L_update = tf.maximum(L, tf.abs(grad))
gradients_sum_update = gradients_sum + grad
grad_norm_sum_update = grad_norm_sum + tf.abs(grad)
reward_update = tf.maximum(reward - grad * tilde_w, 0)
new_w = -gradients_sum_update / (
L_update * (tf.maximum(grad_norm_sum_update + L_update, self._alpha * L_update))) * (reward_update + L_update)
var_update = var - tilde_w + new_w
tilde_w_update = new_w
gradients_sum_update_op = state_ops.assign(gradients_sum, gradients_sum_update)
grad_norm_sum_update_op = state_ops.assign(grad_norm_sum, grad_norm_sum_update)
var_update_op = state_ops.assign(var, var_update)
tilde_w_update_op = state_ops.assign(tilde_w, tilde_w_update)
L_update_op = state_ops.assign(L, L_update)
reward_update_op = state_ops.assign(reward, reward_update)
return control_flow_ops.group(*[gradients_sum_update_op,
var_update_op,
grad_norm_sum_update_op,
tilde_w_update_op,
reward_update_op,
L_update_op])
def _apply_sparse(self, grad, var):
return self._apply_dense(grad, var)
def _resource_apply_dense(self, grad, handle):
return self._apply_dense(grad, handle)