|
| 1 | +""" |
| 2 | +
|
| 3 | + simulated annealing search on one-dimensional objective function to find the better local minima |
| 4 | + |
| 5 | +""" |
| 6 | +from numpy import asarray |
| 7 | +from numpy import exp |
| 8 | +from numpy.random import randn |
| 9 | +from numpy.random import rand |
| 10 | +from numpy.random import seed |
| 11 | + |
| 12 | +# 7 degree polynomial objective function |
| 13 | +def objective(p): |
| 14 | + # x and u for shifting the a templet function |
| 15 | + x = p + 22 |
| 16 | + y = 0 |
| 17 | + return (x**5)-(7* x**3)+(2* x**2)-(x**4)+(6*x)+(.005 * x**7) + y |
| 18 | + |
| 19 | +# simulated annealing algorithm |
| 20 | +def simulated_annealing(objective, bounds, n_iterations, step_size, temp): |
| 21 | + best = bounds[:,0] + randn(len(bounds)) + (bounds[:,1] - bounds[:,0]) |
| 22 | + best_eval = objective(best) |
| 23 | + curr, curr_eval = best, best_eval |
| 24 | + |
| 25 | + for i in range(n_iterations): |
| 26 | + candidate = curr + randn(len(bounds)) * step_size |
| 27 | + #candidate = best + randn() * step_size |
| 28 | + candidate_eval = objective(candidate) |
| 29 | + |
| 30 | + if(candidate_eval < best_eval): |
| 31 | + best, best_eval = candidate, candidate_eval |
| 32 | + print(i, best, best_eval) |
| 33 | + diff = candidate_eval - curr_eval |
| 34 | + t = float(temp/(i+1)) |
| 35 | + metropolis = exp(-diff/t) |
| 36 | + if (diff<0 or metropolis < randn()): |
| 37 | + curr,curr_eval = candidate, candidate_eval |
| 38 | + |
| 39 | + return [ best, best_eval] |
| 40 | + |
| 41 | + |
| 42 | + |
| 43 | + |
| 44 | + |
| 45 | +seed(2) |
| 46 | +# define range for input **most important hyperparameter |
| 47 | +bounds = asarray([[-30, -21.0]]) |
| 48 | +# define the total iterations |
| 49 | +n_iterations = 2000 |
| 50 | +# define the maximum step size |
| 51 | +step_size = .01 |
| 52 | +# initial temperature ** another hyperparameter |
| 53 | +temp = 100 |
| 54 | + |
| 55 | +# perform the simulated annealing search |
| 56 | +best, score = simulated_annealing(objective, bounds, n_iterations, step_size, temp) |
| 57 | +print('Complete!') |
| 58 | +print('f(%s) = %f' % (best, score)) |
| 59 | + |
0 commit comments