forked from mhaut/scalable_RNN_HSI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn.py
159 lines (118 loc) · 5.37 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import sys
import numpy as np
import random
from sru import *
import time
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import aux
class Model(nn.Module):
def __init__(self, args, input_size, nclasses=2):
super(Model, self).__init__()
if args.vanillarnn: net = nn.RNN
elif args.lstm: net = nn.LSTM
elif args.gru: net = nn.GRU
else: net = SRU
d_out = args.d
self.recurrent = net(input_size, args.d, args.depth)#, dropout = args.dropout)
feat_size = d_out * args.numseq
self.bn = nn.BatchNorm1d(feat_size)
self.tanh = nn.Tanh()
self.fc = nn.Linear(feat_size, nclasses)
def forward(self, x):
x = self.recurrent(x)[0]
x = x.permute(1, 0, 2).contiguous()
x = x.view(x.size(0), -1)
x = self.tanh(self.bn(x))
x = self.fc(x)
return x
def eval_model(model, data_loader, use_cuda):
model.eval()
criterion = nn.CrossEntropyLoss()
total_loss = 0.0
predictions = []; real = []
for _, (x, y) in enumerate(data_loader):
with torch.no_grad():
x = Variable(x)
if use_cuda: x = x.cuda()
x = torch.transpose(x, 0, 1).contiguous()
y = Variable(y)
if use_cuda: y = y.cuda()
output = model(x)
loss = criterion(output, y)
total_loss += loss.item()*x.size(1)
pred = output.data.max(1)[1]
predictions = [a for a in pred.data.cpu().numpy()]
real = [a for a in y.data.cpu().numpy()]
return loss.item(), (np.array(real), np.array(predictions))
def train_model(model, optimizer, train_loader, use_cuda):
model.train()
criterion = nn.CrossEntropyLoss()
all_loss = 0
for _, (x, y) in enumerate(train_loader):
model.zero_grad()
x = Variable(x)
if use_cuda: x = x.cuda()
x = torch.transpose(x, 0, 1).contiguous()
y = Variable(y)
if use_cuda: y = y.cuda()
output = model(x)
loss = criterion(output, y)
all_loss += loss.item()
loss.backward()
optimizer.step()
return model, optimizer
if __name__ == "__main__":
argparser = argparse.ArgumentParser(sys.argv[0], conflict_handler='resolve')
argparser.add_argument("--cnn", action='store_true', help="whether to use cnn")
argparser.add_argument("--lstm", action='store_true', help="whether to use lstm")
argparser.add_argument("--gru", action='store_true', help="whether to use gru")
argparser.add_argument("--vanillarnn", action='store_true', help="whether to use vanilla rnn")
argparser.add_argument("--cudnn", action='store_true', help="whether to use cuda")
argparser.add_argument("--use_cuda", action='store_false', help="cuda or not")
argparser.add_argument("--dataset", type=str, default="indian", help="which dataset")
argparser.add_argument("--numseq", type=int, default=-1) # if numseq -1 numseq = numbands
argparser.add_argument("--pca", type=int, default=-1) # if numseq -1 numseq = numbands
argparser.add_argument("--use_val", action='store_true', help="validation or not")
argparser.add_argument("--valpercent", type=float, default=0.1)
argparser.add_argument("--random_state", type=int, default=69)
argparser.add_argument("--batch_size", type=int, default=100)
argparser.add_argument("--epochs", type=int, default=200)
argparser.add_argument("--idtest", type=int, default=0)
argparser.add_argument("--d", type=int, default=64)
#argparser.add_argument("--dropout", type=float, default=0.10)
argparser.add_argument("--tpercent", type=float, default=-1) # if -1, 15 indian 10 the others
argparser.add_argument("--depth", type=int, default=1)
argparser.add_argument("--lr", type=float, default=0.001)
args = argparser.parse_args()
torch.backends.cudnn.enabled = True if args.cudnn else False
if args.tpercent == -1: args.tpercent = 0.15 if args.dataset == "indian" else 0.10
train_loader, test_loader, val_loader, all_loader, nclasses, bands = aux.get_loaders(args)
model = Model(args, bands, nclasses)
print("PARAMS", sum(p.numel() for p in model.parameters() if p.requires_grad))
if args.use_cuda: model = model.cuda()
need_grad = lambda x: x.requires_grad
optimizer = optim.Adam(
filter(need_grad, model.parameters()),
lr = args.lr
)
best_acc = -1e+8
val_loader = val_loader if args.use_val else test_loader
for epoch in range(args.epochs):
model, optimizer = train_model(model, optimizer, train_loader, args.use_cuda)
losstr, (realtr,predstr) = eval_model(model, train_loader, args.use_cuda)
losste, (realte,predste) = eval_model(model, val_loader, args.use_cuda)
resultstr = aux.reports(predstr, realtr, range(nclasses))[2]
resultste = aux.reports(predste, realte, range(nclasses))[2]
print(epoch, "TRAIN LOSS", losstr, "TRAIN ACC", resultstr[0],\
"LOSS", losste, "ACC", resultste[0])
if resultste[0] > best_acc:
best_acc = resultste[0]
torch.save(model.state_dict(), '/tmp/best_model.pth.tar')
model.load_state_dict(torch.load('/tmp/best_model.pth.tar'))
_, (real,preds) = eval_model(model, test_loader, args)
results = aux.reports(preds, real, range(nclasses))[2]
print(results)