-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathModel.py
66 lines (55 loc) · 2.29 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from torch.nn import Linear, Conv2d, MaxPool2d, LocalResponseNorm, Dropout
from torch.nn.functional import relu
from torch.nn import Module
import torch.nn.functional as F
import torch
class SiameseConvNet(Module):
def __init__(self):
super().__init__()
self.conv1 = Conv2d(1, 48, kernel_size=(11, 11), stride=1)
self.lrn1 = LocalResponseNorm(48, alpha=1e-4, beta=0.75, k=2)
self.pool1 = MaxPool2d(kernel_size=(3, 3), stride=2)
self.conv2 = Conv2d(48, 128, kernel_size=(5, 5), stride=1, padding=2)
self.lrn2 = LocalResponseNorm(128, alpha=1e-4, beta=0.75, k=2)
self.pool2 = MaxPool2d(kernel_size=(3, 3), stride=2)
self.dropout1 = Dropout(0.3)
self.conv3 = Conv2d(128, 256, kernel_size=(3, 3), stride=1, padding=1)
self.conv4 = Conv2d(256, 96, kernel_size=(3, 3), stride=1, padding=1)
self.pool3 = MaxPool2d(kernel_size=(3, 3), stride=2)
self.dropout2 = Dropout(0.3)
self.fc1 = Linear(25 * 17 * 96, 1024)
self.dropout3 = Dropout(0.5)
self.fc2 = Linear(1024, 128)
def forward_once(self, x):
x = relu(self.conv1(x))
x = self.lrn1(x)
x = self.pool1(x)
x = relu(self.conv2(x))
x = self.lrn2(x)
x = self.pool2(x)
x = self.dropout1(x)
x = relu(self.conv3(x))
x = relu(self.conv4(x))
x = self.pool3(x)
x = self.dropout2(x)
x = x.view(-1, 17 * 25 * 96)
x = relu(self.fc1(x))
x = self.dropout3(x)
x = relu(self.fc2(x))
return x
def forward(self, x, y):
f_x = self.forward_once(x)
f_y = self.forward_once(y)
return f_x, f_y
def distance_metric(features_a, features_b):
batch_losses = F.pairwise_distance(features_a, features_b)
return batch_losses
class ContrastiveLoss(torch.nn.Module):
def __init__(self, margin=2):
super(ContrastiveLoss, self).__init__()
self.margin = margin
def forward(self, output1, output2, label):
euclidean_distance = F.pairwise_distance(output1, output2)
loss_contrastive = torch.mean((1 - label) * torch.pow(euclidean_distance, 2) +
(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))
return loss_contrastive