|
| 1 | + |
| 2 | +# coding: utf-8 |
| 3 | + |
| 4 | +# In[1]: |
| 5 | + |
| 6 | + |
| 7 | +import torch |
| 8 | +import torch.nn as nn |
| 9 | +from torch.autograd import Variable |
| 10 | +import torchvision.datasets as dset |
| 11 | +import torchvision.transforms as transforms |
| 12 | +import torch.nn.functional as F |
| 13 | +import torch.optim as optim |
| 14 | +import sys |
| 15 | + |
| 16 | + |
| 17 | +# In[2]: |
| 18 | + |
| 19 | + |
| 20 | +from matplotlib import pyplot as plt |
| 21 | +from torchvision import utils |
| 22 | +show_image=True |
| 23 | +def imshow(inp, file_name, save=False, title=None): |
| 24 | + """Imshow for Tensor.""" |
| 25 | + fig = plt.figure(figsize=(5, 5)) |
| 26 | + inp = inp.numpy().transpose((1, 2, 0)) |
| 27 | + plt.imshow(inp, cmap='gray') |
| 28 | + if show_image: |
| 29 | + plt.show() |
| 30 | + |
| 31 | + |
| 32 | +# In[4]: |
| 33 | + |
| 34 | + |
| 35 | +root = './data' |
| 36 | +download = True |
| 37 | +trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5,), (0.5,0.5,0.5))]) |
| 38 | +trans = transforms.Compose([transforms.ToTensor()]) |
| 39 | +train_set = dset.MNIST(root=root, train=True, transform=trans, download=download) |
| 40 | +test_set = dset.MNIST(root=root, train=False, transform=trans) |
| 41 | +batch_size = 128 |
| 42 | +kwargs = {} |
| 43 | +train_loader = torch.utils.data.DataLoader( |
| 44 | + dataset=train_set, |
| 45 | + batch_size=batch_size, |
| 46 | + shuffle=True) |
| 47 | +test_loader = torch.utils.data.DataLoader( |
| 48 | + dataset=test_set, |
| 49 | + batch_size=batch_size, |
| 50 | + shuffle=False) |
| 51 | + |
| 52 | + |
| 53 | +# In[70]: |
| 54 | + |
| 55 | + |
| 56 | +z_size=128 |
| 57 | +hidden_size=128 |
| 58 | +img_size=28 |
| 59 | + |
| 60 | + |
| 61 | +# In[71]: |
| 62 | + |
| 63 | + |
| 64 | +class Generator(nn.Module): |
| 65 | + def __init__(self): |
| 66 | + super().__init__() |
| 67 | + self.model = nn.Sequential( |
| 68 | + nn.Linear(z_size, hidden_size*2), |
| 69 | + nn.LeakyReLU(0.2, inplace=True), |
| 70 | + nn.Linear(hidden_size*2, hidden_size*4), |
| 71 | + nn.LeakyReLU(0.2, inplace=True), |
| 72 | +# nn.Linear(hidden_size*4, hidden_size*8), |
| 73 | +# nn.LeakyReLU(0.2, inplace=True), |
| 74 | + nn.Linear(hidden_size*4, img_size**2), |
| 75 | + nn.Tanh() |
| 76 | + ) |
| 77 | + def forward(self, x): |
| 78 | + x = x.view(x.size()[0], z_size) |
| 79 | + out = self.model(x) |
| 80 | + out = out.view(x.size()[0], 1,img_size,img_size) |
| 81 | + return out |
| 82 | + |
| 83 | + |
| 84 | +# In[72]: |
| 85 | + |
| 86 | + |
| 87 | +class Discriminator(nn.Module): |
| 88 | + def __init__(self): |
| 89 | + super().__init__() |
| 90 | + self.model = nn.Sequential( |
| 91 | + nn.Linear(img_size**2, hidden_size*4), |
| 92 | + nn.LeakyReLU(0.2, inplace=True), |
| 93 | + nn.Dropout(0.3), |
| 94 | +# nn.Linear(hidden_size*8, hidden_size*4), |
| 95 | +# nn.LeakyReLU(0.2, inplace=True), |
| 96 | +# nn.Dropout(0.3), |
| 97 | + nn.Linear(hidden_size*4, hidden_size*2), |
| 98 | + nn.LeakyReLU(0.2, inplace=True), |
| 99 | + nn.Dropout(0.3), |
| 100 | + nn.Linear(hidden_size*2, 1), |
| 101 | + ) |
| 102 | + def forward(self, x): |
| 103 | + out = self.model(x.view(x.size(0), img_size**2)) |
| 104 | + out = out.view(out.size(0), -1) |
| 105 | + return out |
| 106 | + |
| 107 | + |
| 108 | +# In[73]: |
| 109 | + |
| 110 | + |
| 111 | +from tqdm import tqdm |
| 112 | +G = Generator() |
| 113 | +D = Discriminator() |
| 114 | +if torch.cuda.is_available(): |
| 115 | + G.cuda() |
| 116 | + D.cuda() |
| 117 | +G_lr = D_lr = 5e-5 |
| 118 | +optimizers = { |
| 119 | + 'D': torch.optim.RMSprop(D.parameters(), lr=D_lr), |
| 120 | + 'G': torch.optim.RMSprop(G.parameters(), lr=G_lr) |
| 121 | +} |
| 122 | +criterion = nn.BCELoss() |
| 123 | +for epoch in tqdm(range(10000)): |
| 124 | + for _ in range(5): |
| 125 | + optimizers['D'].zero_grad() |
| 126 | + data=next(iter(train_loader))[0] |
| 127 | + data = Variable(data) |
| 128 | + output_real = D(data) |
| 129 | + noisev = torch.randn(data.size()[0], z_size, 1, 1) |
| 130 | + noisev = Variable(noisev) |
| 131 | + fake_data = G(noisev) |
| 132 | + output_fake = D(fake_data) |
| 133 | + D_loss = -(torch.mean(output_real) - torch.mean(output_fake)) |
| 134 | + |
| 135 | + D_loss.backward() |
| 136 | + optimizers['D'].step() |
| 137 | + for p in D.parameters(): |
| 138 | + p.data.clamp_(-0.01, 0.01) |
| 139 | + |
| 140 | + optimizers['G'].zero_grad() |
| 141 | + noisev = torch.randn(data.size()[0], z_size, 1, 1) |
| 142 | + noisev = Variable(noisev) |
| 143 | + fake_data = G(noisev) |
| 144 | + output_fake1 = D(fake_data) |
| 145 | + G_loss = -torch.mean(output_fake1) |
| 146 | + |
| 147 | + G_loss.backward() |
| 148 | + optimizers['G'].step() |
| 149 | + |
| 150 | + if epoch % 1000 == 0: |
| 151 | + dd = utils.make_grid(fake_data.data[:16]) |
| 152 | + imshow(dd,'./results/WGAN_%d.png'%(epoch)) |
| 153 | + |
| 154 | + |
| 155 | +# In[28]: |
| 156 | + |
| 157 | + |
| 158 | +class Generator(nn.Module): |
| 159 | + def __init__(self): |
| 160 | + super().__init__() |
| 161 | + d=128 |
| 162 | + self.model = nn.Sequential( |
| 163 | + nn.ConvTranspose2d(z_size, d*8, 4, 1, 0), |
| 164 | + nn.BatchNorm2d(d*8), |
| 165 | + nn.ReLU(), |
| 166 | + nn.ConvTranspose2d(d*8, d*4, 4, 2, 1), |
| 167 | + nn.BatchNorm2d(d*4), |
| 168 | + nn.ReLU(), |
| 169 | + nn.ConvTranspose2d(d*4, d*2, 4, 2, 1), |
| 170 | + nn.BatchNorm2d(d*2), |
| 171 | + nn.ReLU(), |
| 172 | + nn.ConvTranspose2d(d*2, d, 4, 2, 1), |
| 173 | + nn.BatchNorm2d(d), |
| 174 | + nn.ReLU(), |
| 175 | + nn.ConvTranspose2d(d, 1, 4, 2, 1), |
| 176 | + nn.Tanh(), |
| 177 | + ) |
| 178 | + def forward(self, x): |
| 179 | + x = x.view(x.size()[0], z_size, 1,1) |
| 180 | + out = self.model(x) |
| 181 | + print(out.size()) |
| 182 | + out = out.view(x.size()[0], 1,img_size,img_size) |
| 183 | + return out |
| 184 | + |
0 commit comments