@@ -22,35 +22,50 @@ Example usage:
22
22
Simple linear classification.
23
23
24
24
``` Python
25
+ import skflow
26
+ from sklearn import datasets, metrics
27
+
25
28
iris = datasets.load_iris()
26
29
classifier = skflow.TensorFlowLinearClassifier(n_classes = 3 )
27
30
classifier.fit(iris.data, iris.target)
28
- score = accuracy_score(classifier.predict(iris.data), iris.target)
31
+ score = metrics.accuracy_score(classifier.predict(iris.data), iris.target)
32
+ print " Accuracy: " , score
29
33
```
30
34
31
35
### Deep Neural Network
32
36
33
37
Example of 3 layer network with 10, 20 and 10 hidden units respectively:
34
38
35
39
``` Python
40
+ import skflow
41
+ from sklearn import datasets, metrics
42
+
43
+ iris = datasets.load_iris()
36
44
classifier = skflow.TensorFlowDNNClassifier(hidden_units = [10 , 20 , 10 ], n_classes = 3 )
37
45
classifier.fit(iris.data, iris.target)
38
46
score = accuracy_score(classifier.predict(iris.data), iris.target)
47
+ print " Accuracy: " , score
39
48
```
40
49
41
50
### Custom model
42
51
43
- This example how to pass custom model to the TensorFlowEstimator
52
+ This is example of how to pass custom model to the TensorFlowEstimator
44
53
45
54
``` Python
55
+ import skflow
56
+ from sklearn import datasets, metrics
57
+
58
+ iris = datasets.load_iris()
59
+
46
60
def my_model (X , y ):
47
61
""" This is DNN with 10, 20, 10 hidden layers, and dropout of 0.5 probability."""
48
- layers = skflow.ops.dnn(X, [10 , 20 , 10 ], keep_proba = 0.5 )
49
- return skflow.logistic_classifier(layers, y)
62
+ layers = skflow.ops.dnn(X, [10 , 20 , 10 ], keep_prob = 0.5 )
63
+ return skflow.ops. logistic_classifier(layers, y)
50
64
51
65
classifier = skflow.TensorFlowEstimator(model_fn = my_model, n_classes = 3 )
52
66
classifier.fit(iris.data, iris.target)
53
67
score = accuracy_score(classifier.predict(iris.data), iris.target)
68
+ print " Accuracy: " , score
54
69
```
55
70
56
71
## Coming soon
0 commit comments