-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain_fitting.py
179 lines (144 loc) · 6.63 KB
/
train_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import sys
import torch
import numpy as np
from omegaconf import OmegaConf
import torch.distributed as dist
from torch.utils.data import DataLoader
from dva.ray_marcher import RayMarcher
from dva.io import load_from_config
from dva.losses import process_losses
from dva.utils import to_device
from dva.visualize import render_primsdf, visualize_primsdf_box
import logging
device = torch.device("cuda")
logger = logging.getLogger("train_fitting.py")
def main(config):
dist.init_process_group("nccl")
logging.basicConfig(level=logging.INFO)
local_rank = int(os.environ["LOCAL_RANK"])
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
os.makedirs(f"{config.output_dir}/checkpoints", exist_ok=True)
OmegaConf.save(config, f"{config.output_dir}/config.yml")
logger.info(f"saving results to {config.output_dir}")
logger.info(f"starting training with the config: {OmegaConf.to_yaml(config)}")
dataset = load_from_config(config.dataset)
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
loader = DataLoader(
dataset,
batch_size=config.train.get("batch_size", 4),
pin_memory=False,
sampler=train_sampler,
num_workers=config.train.get("n_workers", 1),
drop_last=True,
worker_init_fn=lambda _: np.random.seed(),
)
model = load_from_config(config.model, mesh_obj=dataset.mesh_obj, f_sdf=dataset.f_sdf, geo_fn=dataset.geo_fn_list, asset_list=dataset.asset_list)
model = model.to(device)
# computing values for the given viewpoints
rm = RayMarcher(
config.image_height,
config.image_width,
**config.rm,
).to(device)
loss_fn = load_from_config(config.loss).to(device)
optimizer = load_from_config(config.optimizer, params=model.parameters())
iteration = 0
model.train()
# stage 1, optimizing SDF only
while True:
if iteration >= config.train.shape_fit_steps:
model.eval()
visualize_primsdf_box("{}/{:06d}_box_nosampling.png".format(config.output_dir, iteration), model, rm, device)
render_primsdf("{}/{:06d}_rendering.png".format(config.output_dir, iteration), model, rm, device)
model.train()
break
for b, batch in enumerate(loader):
batch = to_device(batch, device)
for k, v in batch.items():
batch[k] = v.reshape(config.train.batch_size * config.dataset.chunk_size, *v.shape[2:])
if local_rank == 0 and batch is None:
logger.info(f"batch {b} is None, skipping")
continue
if local_rank == 0 and iteration >= config.train.shape_fit_steps:
logger.info(f"stopping after {config.train.shape_fit_steps}")
break
batch['pts'].requires_grad_(True)
preds = model(batch['pts'])
preds['prim_scale'] = (1 / model.scale.reshape(1, model.num_prims, 1).repeat(1, 1, 3))
loss, loss_dict = loss_fn(batch, preds, iteration)
_loss_dict = process_losses(loss_dict)
if torch.isnan(loss):
loss_str = " ".join([f"{k}={v:.4f}" for k, v in _loss_dict.items()])
logger.warning(f"some of the losses is NaN, skipping: {loss_str}")
continue
optimizer.zero_grad()
loss.backward()
optimizer.step()
if local_rank == 0 and iteration % config.train.log_every_n_steps == 0:
loss_str = " ".join([f"{k}={v:.4f}" for k, v in _loss_dict.items()])
logger.info(f"iter={iteration}: {loss_str}")
if (
local_rank == 0
# and iteration
and iteration % config.train.summary_every_n_steps == 0
):
logger.info(
f"saving summary to {config.output_dir} after {iteration} steps"
)
iteration += 1
pass
# stage 2, optimizing texture
optimizer_tex = load_from_config(config.optimizer, params=[model.feat_param])
while True:
if iteration >= config.train.tex_fit_steps:
if (local_rank == 0):
logger.info(f"Texture Optimization Done: saving checkpoint after {iteration} steps")
model.eval()
visualize_primsdf_box("{}/{:06d}_box_nosampling.png".format(config.output_dir, iteration), model, rm, device)
render_primsdf("{}/{:06d}_rendering.png".format(config.output_dir, iteration), model, rm, device)
model.train()
if config.train.save_fp16:
model = model.half()
params = {
"model_state_dict": model.state_dict(),
}
torch.save(params, f"{config.output_dir}/checkpoints/tex-{iteration:06d}.pt")
break
for b, batch in enumerate(loader):
batch = to_device(batch, device)
for k, v in batch.items():
batch[k] = v.reshape(config.train.batch_size * config.dataset.chunk_size, *v.shape[2:])
if local_rank == 0 and batch is None:
logger.info(f"batch {b} is None, skipping")
continue
if local_rank == 0 and iteration >= config.train.tex_fit_steps:
logger.info(f"stopping after {config.train.tex_fit_steps}")
break
preds = model(batch['tex_pts'])
preds['prim_scale'] = (1 / model.scale.reshape(1, model.num_prims, 1).repeat(1, 1, 3))
loss, loss_dict = loss_fn(batch, preds, iteration)
_loss_dict = process_losses(loss_dict)
if torch.isnan(loss):
loss_str = " ".join([f"{k}={v:.4f}" for k, v in _loss_dict.items()])
logger.warning(f"some of the losses is NaN, skipping: {loss_str}")
continue
optimizer_tex.zero_grad()
loss.backward()
optimizer_tex.step()
if local_rank == 0 and iteration % config.train.log_every_n_steps == 0:
loss_str = " ".join([f"{k}={v:.4f}" for k, v in _loss_dict.items()])
logger.info(f"iter={iteration}: {loss_str}")
iteration += 1
pass
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
# set config
config = OmegaConf.load(str(sys.argv[1]))
config_cli = OmegaConf.from_cli(args_list=sys.argv[2:])
if config_cli:
logger.info("overriding with following values from args:")
logger.info(OmegaConf.to_yaml(config_cli))
config = OmegaConf.merge(config, config_cli)
main(config)