forked from zjumsj/GaussianBlendshapes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
523 lines (426 loc) · 25.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import os
import numpy as np
import uuid
from tqdm import tqdm
from argparse import Namespace
import random
import torch
from torch.utils.tensorboard import SummaryWriter
from utils.loss_utils import l1_loss_pixel, l1_loss, ssim
from utils.utils import str2bool, dump_code, images_to_video
from utils.general_utils import safe_state
from utils.image_utils import psnr
import config.config_blendshapes as config
import FLAME.transforms as f_transforms
import FLAME.face_gs_model as f_gaussian_model
import FLAME.mouth_gs_model as mouth_model
from FLAME.dataset import FaceDataset
from FLAME.dataset_dyn import FaceDatasetDyn
from FLAME.dataset_nerfbs import FaceDatasetNerfBS
import FLAME.face_renderer as f_renderer
#ignore_neck = False
ignore_neck = True
max_displacement_of_blendshape0 = 0.005703532602638
max_displacement_of_blendshape49 = 0.000237277025008
torch.set_num_threads(1)
dump_profiler = False
#dump_profiler = True
if dump_profiler:
import torch.profiler
def mask_function(x,args):
threshold = max_displacement_of_blendshape49 * 0.1
L = torch.sqrt(torch.clamp(torch.sum(x * x, dim=1),1e-18,None))
y = torch.clamp((L-threshold) / (max_displacement_of_blendshape0 - threshold),0,None)
return y
def config_parse():
import argparse
parser = argparse.ArgumentParser(description='Train your network sailor.')
parser.add_argument('--sh_degree',type=int,default=config.sh_degree,help='sh level total basis is (D+1)*(D+1)')
parser.add_argument('-s','--source_path',type=str,default=config.source_path, help='dataset path')
parser.add_argument('-m','--model_path',type=str, default=config.model_path, help='model path')
parser.add_argument("--white_bkgd", type=str2bool, default=config.white_bkgd, help='set to render synthetic data on a white bkgd (always use for dvoxels)')
parser.add_argument("--data_device",type=str,default=config.data_device)
parser.add_argument("--reside_image_on_gpu",type=str2bool,default=config.reside_image_on_gpu)
parser.add_argument("--use_nerfBS",type=str2bool, default=config.use_nerfBS, help='enable to train on NeRFBlendShape dataset')
parser.add_argument("--use_HR", type=str2bool, default=config.use_HR, help='use high resolution images')
# optimizer
parser.add_argument("--iterations", type=int, default=config.iterations)
parser.add_argument("--position_lr_init", type=float, default=config.position_lr_init)
parser.add_argument("--position_lr_final", type=float, default=config.position_lr_final)
parser.add_argument("--position_lr_delay_mult", type=float, default=config.position_lr_delay_mult)
parser.add_argument("--position_lr_max_steps", type=int, default=config.position_lr_max_steps)
parser.add_argument("--feature_lr",type=float, default=config.feature_lr)
parser.add_argument("--opacity_lr",type=float, default=config.opacity_lr)
parser.add_argument("--scaling_lr",type=float, default=config.scaling_lr)
parser.add_argument("--rotation_lr",type=float, default=config.rotation_lr)
parser.add_argument("--percent_dense",type=float, default=config.percent_dense)
parser.add_argument("--lambda_dssim", type=float, default=config.lambda_dssim)
parser.add_argument("--densification_interval", type=int, default=config.densification_interval)
parser.add_argument("--opacity_reset_interval", type=int, default=config.opacity_reset_interval)
parser.add_argument("--densify_from_iter", type=int, default=config.densify_from_iter)
parser.add_argument("--densify_until_iter", type=int, default=config.densify_until_iter)
parser.add_argument("--densify_grad_threshold", type=float, default=config.densify_grad_threshold)
parser.add_argument("--camera_extent", type=float, default=config.camera_extent)
parser.add_argument("--convert_SHs_python", type=str2bool, default=config.convert_SHs_python)
parser.add_argument("--compute_cov3D_python",type=str2bool, default=config.compute_cov3D_python)
parser.add_argument("--debug",type=str2bool,default=False)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=list, default=config.test_iterations)
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=config.checkpoint_iterations)
# face
parser.add_argument('--flame_geom_path', type=str, default=config.flame_geom_path)
parser.add_argument('--flame_lmk_path', type=str, default=config.flame_lmk_path)
parser.add_argument('--back_head_file', type=str, default=config.back_head_file)
parser.add_argument('--use_dyn_point', type=bool, default=config.use_dyn_point)
parser.add_argument('--update_consistency', type=str2bool, default=config.update_consistency)
parser.add_argument('--init_face_point_number', type=int, default=config.init_face_point_number)
parser.add_argument('--num_shape_params', type=int, default=config.num_shape_params)
parser.add_argument('--num_exp_params',type=int ,default=config.num_exp_params)
parser.add_argument('--basis_lr_decay',type=float,default=config.basis_lr_decay)
parser.add_argument('--weight_decay', type=float, default=config.weight_decay)
parser.add_argument('--alpha_loss',type=float, default=config.alpha_loss)
parser.add_argument('--mouth_loss_weight', type=float, default=config.mouth_loss_weight)
parser.add_argument('--mouth_loss_type', type=float, default=config.mouth_loss_type)
parser.add_argument('--cylinder_params', type=object, default=config.cylinder_params)
parser.add_argument('--isotropic_loss',type=float, default=config.isotropic_loss)
parser.add_argument('--lpips_loss',type=float, default=config.lpips_loss)
args, unknown = parser.parse_known_args()
if len(unknown) != 0:
print(unknown)
exit(-1)
args.flame_template_path = os.path.join(args.source_path,"canonical.obj")
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
os.makedirs(args.model_path,exist_ok=True)
dump_code(os.path.dirname(os.path.abspath(__file__)), args.model_path)
return args
def training(args, testing_iterations, checkpoint_iterations, debug_from):
first_iter = 0
if args.use_nerfBS:
dataset = FaceDatasetNerfBS(args.source_path, shuffle=False)
dataset.prepare_data(reside_image_on_gpu=args.reside_image_on_gpu,device=args.data_device)
else:
if args.use_HR:
dataset = FaceDatasetDyn(args.source_path, shuffle=False, ratio=2.0)
dataset.prepare_data(reside_image_on_gpu=args.reside_image_on_gpu,device=args.data_device)
dataset.load_test_images_in_adv()
else:
dataset = FaceDataset(args.source_path, shuffle=False)
dataset.prepare_data(reside_image_on_gpu=args.reside_image_on_gpu,device=args.data_device)
dummy_frame = dataset.output_list[0]
tb_writer = prepare_output_and_logger(args)
face_gaussians = f_gaussian_model.GaussianModel(args.sh_degree)
face_gaussians.create_from_face(dummy_frame, args, args.camera_extent)
face_gaussians.training_setup(args, id=0)
mouth_file0 = "./data/up_billboard_tri.obj"
mouth_file1 = "./data/down_billboard_tri.obj"
mouth_offsetfile = os.path.join(args.source_path,"offset.txt")
if os.path.exists(mouth_offsetfile):
mouth_offset = np.loadtxt(mouth_offsetfile,dtype=np.float32)
else:
mouth_offset = np.array([3.3226e-4, 2.29566e-3, -1.21933e-3],dtype=np.float32)
cylinder_params = args.cylinder_params
bounding_cylinder = mouth_model.BoundingCylinder(
np.array(cylinder_params[:3],dtype=np.float32) + mouth_offset,
R=cylinder_params[3], half_H=cylinder_params[4]
)
mouth_gaussians_up = mouth_model.GaussianModel(args.sh_degree,0) # up teeth
mouth_gaussians_down = mouth_model.GaussianModel(args.sh_degree,1) # down teeth
##
mouth_gaussians_up.create_from_face(mouth_file0, mouth_offset, args, args.camera_extent)
mouth_gaussians_down.create_from_face(mouth_file1, mouth_offset, args, args.camera_extent)
mouth_gaussians_up.training_setup(args)
mouth_gaussians_down.training_setup(args)
## Generate rigid transfer according to anchor points on the back of the head
# used to transfer upper teeth
f_transforms.rigid_transfer(dataset, face_gaussians, args, gen_local_frame=False)
## Generate blendshape consistency scalar
f_transforms.get_expr_consistency_face(face_gaussians, dummy_frame, mask_function, args, ignore_neck=ignore_neck)
## Generate deformation transfers for each expression blendshape
f_transforms.get_expr_rot(face_gaussians, dummy_frame, args, light=True)
## Get pose blendshapes and eyelid blendshapes
f_transforms.get_pose_tensor(face_gaussians, args)
## Get joints and joint transfers for each frame.
f_transforms.from_mesh_to_point(dataset, face_gaussians, args)
## Generate jaw transfer
# used to transfer lower teeth
f_transforms.rigid_transfer_for_mouth2(dataset, face_gaussians, args)
print('initialize ...')
#face_gaussians.extract_acc()
face_gaussians.compute_blendshape_init()
bg_color = [1, 1, 1] if args.white_bkgd else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
if dump_profiler:
prof = torch.profiler.profile(
schedule=torch.profiler.schedule(wait=1, warmup=1, active=10, repeat=2),
on_trace_ready=torch.profiler.tensorboard_trace_handler(args.model_path),
record_shapes=True,
with_stack=True
)
prof.start()
lpips_loss_fn = None
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, args.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, args.iterations + 1):
iter_start.record()
face_gaussians.update_learning_rate(iteration)
mouth_gaussians_up.update_learning_rate(iteration)
mouth_gaussians_down.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
face_gaussians.oneupSHdegree()
mouth_gaussians_up.oneupSHdegree()
mouth_gaussians_down.oneupSHdegree()
# Pick a random Camera
if args.use_HR:
if not viewpoint_stack:
viewpoint_stack = dataset.getTrainCameras().copy()
random.shuffle(viewpoint_stack)
dataset.create_load_seqs(viewpoint_stack)
viewpoint_stack = viewpoint_stack.copy()
viewpoint_cam = viewpoint_stack.pop(0)
frame = dataset.getData(viewpoint_cam, load_mode='load')
else:
if not viewpoint_stack:
viewpoint_stack = dataset.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(random.randint(0, len(viewpoint_stack)-1))
frame = dataset.getData(viewpoint_cam)
# Render
if (iteration - 1) == debug_from:
args.debug = True
face_gaussians.prepare_merge(frame)
face_gaussians.prepare_xyz(frame,args)
mouth_gaussians_up.prepare_xyz(frame,args)
mouth_gaussians_down.prepare_xyz(frame,args)
gaussians = [face_gaussians, mouth_gaussians_up, mouth_gaussians_down]
render_pkg = f_renderer.render_alpha(frame, gaussians, args, background)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
alpha0 = render_pkg['alpha0']
# Loss
gt_image = frame.original_image.cuda()
gt_image = gt_image.permute(2,0,1)
if args.use_nerfBS:
bkg = frame.bkg.cuda()
bkg = bkg.permute(2,0,1)
mask = frame.mask.cuda()
image = image + (1-alpha0) * bkg # image with background
gt_image_ = gt_image
else:
mask = frame.mask.cuda()
gt_image_ = gt_image * mask
Ll1 = l1_loss(image, gt_image_)
loss = (1.0 - args.lambda_dssim) * Ll1 + args.lambda_dssim * (1.0 - ssim(image, gt_image_))
if args.lpips_loss:
if lpips_loss_fn is None:
import lpips
#lpips_loss_fn = lpips.LPIPS(net='alex')
lpips_loss_fn = lpips.LPIPS(net='vgg')
lpips_loss_fn = lpips_loss_fn.to(args.data_device)
# image should be RGB and normalized to [-1,1]
d = lpips_loss_fn(
gt_image_.unsqueeze(0) * 2. - 1.,
image.unsqueeze(0) * 2. - 1.
)
loss = loss + d * args.lpips_loss
if args.isotropic_loss: # add isotropic constraints
gaussians_scale = [o.get_scaling for o in gaussians]
gaussians_scale = torch.cat(gaussians_scale,dim=0)
max_scale = gaussians_scale.max(-1)[0]
min_scale = gaussians_scale.min(-1)[0]
ratio = (max_scale + 1e-3) / (min_scale + 1e-3)
tmp = (ratio - 1.) ** 2.
loss = loss + args.isotropic_loss * tmp.mean()
if args.mouth_loss_type == 1:
loss = loss + args.mouth_loss_weight * (
bounding_cylinder.compute_loss(mouth_gaussians_up._xyz).mean() +
bounding_cylinder.compute_loss(mouth_gaussians_down._xyz).mean()
)
elif args.mouth_loss_type == 2:
bounding_cylinder.hard_constraint(mouth_gaussians_up._xyz)
bounding_cylinder.hard_constraint(mouth_gaussians_down._xyz)
if args.alpha_loss > 0:
loss = loss + args.alpha_loss * ((alpha0 - mask) ** 2)
loss = loss.mean()
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == args.iterations:
progress_bar.close()
training_report(tb_writer, iteration, Ll1, loss, l1_loss_pixel, iter_start.elapsed_time(iter_end), testing_iterations, gaussians, dataset, (args, background))
# Densification
if args.use_dyn_point:
if iteration < args.densify_until_iter:
# Keep track of max radii in image-space for pruning
n_points = [
face_gaussians._scaling.shape[0],
mouth_gaussians_up._scaling.shape[0],
mouth_gaussians_down._scaling.shape[0],
]
radiis = torch.split(radii,n_points,dim=0)
visibility_filters = torch.split(visibility_filter,n_points,dim=0)
grads = torch.split(viewspace_point_tensor.grad, n_points, dim=0)
viewspace_point_tensors = torch.split(viewspace_point_tensor, n_points, dim=0)
for g,v in zip(grads, viewspace_point_tensors):
v.grad = g
face_gaussians.max_radii2D[visibility_filters[0]] = torch.max(face_gaussians.max_radii2D[visibility_filters[0]], radiis[0][visibility_filters[0]])
face_gaussians.add_densification_stats(viewspace_point_tensors[0], visibility_filters[0])
mouth_gaussians_up.max_radii2D[visibility_filters[1]] = torch.max(mouth_gaussians_up.max_radii2D[visibility_filters[1]], radiis[1][visibility_filters[1]])
mouth_gaussians_up.add_densification_stats(viewspace_point_tensors[1], visibility_filters[1])
mouth_gaussians_down.max_radii2D[visibility_filters[2]] = torch.max(mouth_gaussians_down.max_radii2D[visibility_filters[2]], radiis[2][visibility_filters[2]])
mouth_gaussians_down.add_densification_stats(viewspace_point_tensors[2], visibility_filters[2])
if iteration > args.densify_from_iter and iteration % args.densification_interval == 0:
size_threshold = 20 if iteration > args.opacity_reset_interval else None
#face_gaussians.densify_and_prune(args.densify_grad_threshold, 0.005, args.camera_extent, size_threshold)
face_gaussians.densify_and_prune(args.densify_grad_threshold * 5, 0.005, args.camera_extent, size_threshold)
mouth_gaussians_up.densify_and_prune(args.densify_grad_threshold, 0.005, args.camera_extent, size_threshold)
mouth_gaussians_down.densify_and_prune(args.densify_grad_threshold, 0.005, args.camera_extent, size_threshold)
if iteration % args.opacity_reset_interval == 0 or (args.white_bkgd and iteration == args.densify_from_iter):
pass
if args.update_consistency and (iteration % args.densification_interval == 0 and iteration < args.iterations):
face_gaussians.update_from_nn(update_acc_dict=True)
# Optimizer step
if iteration < args.iterations:
face_gaussians.optimizer.step()
face_gaussians.optimizer.zero_grad(set_to_none = True)
mouth_gaussians_up.optimizer.step()
mouth_gaussians_up.optimizer.zero_grad(set_to_none = True)
mouth_gaussians_down.optimizer.step()
mouth_gaussians_down.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((face_gaussians.capture(), iteration), args.model_path + "/fix_chkpnt" + str(iteration) + ".pth")
face_gaussians.save_acc_dict(args.model_path + "/acc" + str(iteration) + ".npy")
torch.save((mouth_gaussians_up.capture(), iteration), args.model_path + "/mouth0_chkpnt" + str(iteration) + ".pth")
torch.save((mouth_gaussians_down.capture(), iteration), args.model_path + "/mouth1_chkpnt" + str(iteration) + ".pth")
if dump_profiler:
prof.step()
if iteration == 30:
break
if dump_profiler:
prof.stop()
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str = os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok=True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = SummaryWriter(args.model_path)
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, gaussians, dataset, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
tmp1 = dataset.getTestCameras()
if renderArgs[0].use_HR:
tmp1 = [dataset.getData(o, load_mode='dont_load') for o in tmp1]
else:
tmp1 = [dataset.getData(o) for o in tmp1]
tmp2 = dataset.getTrainCameras()
tmp2_idx = [o % len(tmp2) for o in range(5,30,5)]
tmp2 = [tmp2[o] for o in tmp2_idx]
tmp2 = [dataset.getData(o) for o in tmp2]
validation_configs = ({"name":"test","cameras":tmp1},{"name":"train", "cameras":tmp2})
del tmp1, tmp2, tmp2_idx
face_gaussians = gaussians[0]
mouth_gaussians_up = gaussians[1]
mouth_gaussians_down = gaussians[2]
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
face_gaussians.prepare_merge(viewpoint)
face_gaussians.prepare_xyz(viewpoint,renderArgs[0])
mouth_gaussians_up.prepare_xyz(viewpoint,renderArgs[0])
mouth_gaussians_down.prepare_xyz(viewpoint,renderArgs[0])
image_set = f_renderer.render_alpha(viewpoint, gaussians, *renderArgs)
pred_mask0 = image_set["alpha0"]
gt_image = viewpoint.original_image.to("cuda")
gt_image = gt_image.permute(2, 0, 1)
if renderArgs[0].use_nerfBS:
bkg = viewpoint.bkg.cuda()
bkg = bkg.permute(2, 0, 1)
image = image_set['render']
image = image + (1 - pred_mask0) * bkg
image = torch.clamp(image, 0.0, 1.0)
else:
mask = viewpoint.mask.to("cuda")
gt_image = torch.clamp(gt_image * mask, 0.0, 1.0)
image = torch.clamp(image_set["render"], 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
## draw extra
views = face_gaussians.vis(viewpoint,renderArgs[0],[f_gaussian_model.View.SHAPE])
tb_writer.add_image(config['name'] + "_view_{}/mesh".format(viewpoint.image_name), np.clip(views[0],0,1), global_step=iteration, dataformats='HWC')
### draw mask
face_mask = torch.stack([viewpoint.mask, torch.zeros_like(viewpoint.mask), torch.zeros_like(viewpoint.mask)], dim=0)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/gt_mask".format(viewpoint.image_name), torch.clip(face_mask,0,1), global_step=iteration, dataformats='CHW')
pred_face_mask = torch.stack([pred_mask0, torch.zeros_like(pred_mask0), torch.zeros_like(pred_mask0)],dim=0)
tb_writer.add_images(config['name'] + "_view_{}/pred_mask".format(viewpoint.image_name), torch.clip(pred_face_mask,0,1), global_step=iteration, dataformats='CHW')
### draw mouth
mouth_image = f_renderer.render(viewpoint, [mouth_gaussians_up, mouth_gaussians_down], *renderArgs)["render"]
mouth_image = torch.clamp(mouth_image,0.0,1.0)
tb_writer.add_images(config['name'] + "_view_{}/mouth".format(viewpoint.image_name), mouth_image, global_step=iteration, dataformats='CHW')
pc_numbers = [
mouth_gaussians_up._scaling.shape[0],
mouth_gaussians_down._scaling.shape[0],
]
override_color = [
torch.tensor([1.,0.,0.],device="cuda").repeat(pc_numbers[0],1),
torch.tensor([0.,1.,0.],device="cuda").repeat(pc_numbers[1],1),
]
mouth_mask = f_renderer.render(viewpoint, [mouth_gaussians_up, mouth_gaussians_down], *renderArgs, override_color=override_color)["render"]
mouth_mask = torch.clamp(mouth_mask, 0.0, 1.0)
tb_writer.add_images(config['name'] + "_view_{}/mouth_mask".format(viewpoint.image_name),mouth_mask, global_step=iteration, dataformats='CHW')
##
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
for ii in range(len(gaussians)):
tb_writer.add_histogram("scene/opacity_histogram_%d" % ii, gaussians[ii].get_opacity, iteration)
tb_writer.add_scalar('total_points_%d' % ii, gaussians[ii].get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
def train():
args = config_parse()
# Initialize system state (RNG)
safe_state(args.quiet)
os.makedirs(args.model_path,exist_ok=True)
dump_code(os.path.dirname(os.path.abspath(__file__)), args.model_path)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(args, args.test_iterations, args.checkpoint_iterations, args.debug_from)
# All done
print("\nTraining complete.")
if __name__ == "__main__":
train()