-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqplot_val_change.R
83 lines (77 loc) · 2.24 KB
/
qplot_val_change.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#' Title
#'
#' @param data_val_change data_val_change
#'
#' @export
#'
qplot_val_change <- function(data_val_change) {
# prepare data for plots
group_cols <-
colnames(data_val_change)[!colnames(data_val_change) %in% c("value_change_absolute", "value_change_percent")]
data_plt <- data_val_change |>
tidyr::unite("xaxis_values",
all_of(group_cols),
sep = "-",
remove = TRUE
)
# do plots
p_perc <-
plot_value_change(data_plt,
is_percentage = TRUE
) +
ggplot2::labs(
title = "Analysed portfolio percentage value change",
y = "Value change (% points)"
)
p_abs <- plot_value_change(data_plt,
is_percentage = FALSE
) +
ggplot2::labs(
title = "Analysed portfolio absolute value change",
y = "Value change (currency)"
)
gridExtra::grid.arrange(p_perc + patchwork::plot_spacer(), p_abs + patchwork::plot_spacer(), ncol = 1)
}
#' Title
#'
#' @param data_plt data_plt
#' @param is_percentage is_percentage
#'
#' @export
#'
plot_value_change <- function(data_plt, is_percentage) {
if (is_percentage) {
labels <- scales::percent
y_val_name <- "value_change_percent"
} else {
labels <- scales::unit_format(unit = "M", scale = 1e-6)
y_val_name <- "value_change_absolute"
}
p <-
ggplot2::ggplot(
data_plt,
ggplot2::aes(x = xaxis_values, y = !!rlang::sym(y_val_name), fill = !!rlang::sym(y_val_name))
) +
ggplot2::geom_bar(stat = "identity") +
ggplot2::geom_hline(yintercept = 0) +
r2dii.plot::theme_2dii() +
ggplot2::theme(
legend.position = "right",
axis.text.x = ggplot2::element_text(angle = 45, hjust = 1, size = 10),
# axis.ticks.x = element_blank(),
axis.title.x = ggplot2::element_blank()
) +
ggplot2::scale_fill_gradient(
low = r2dii.colours::palette_1in1000_plot %>%
dplyr::filter(.data$label == "red") %>%
dplyr::pull(.data$hex),
high = r2dii.colours::palette_1in1000_plot %>%
dplyr::filter(.data$label == "green") %>%
dplyr::pull(.data$hex),
# midpoint = min(data_plt[,y_val_name]),
labels = labels,
name = "Expected loss"
) +
ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(.1, 0)), labels = labels)
p
}