-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_load_trajectories.R
135 lines (122 loc) · 4.67 KB
/
data_load_trajectories.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#' Title
#'
#' @param crispy_outputs_dir crispy_outputs_dir
#' @param granularity granularity
#' @param param_cols param_cols
#'
#' @export
#'
main_data_load_trajectories_data_from_file <- function(
crispy_outputs_dir,
...) {
company_trajectories_data <- load_multiple_trajectories(crispy_outputs_dir) |>
main_data_load_trajectories_data(...)
return(company_trajectories_data)
}
#' Title
#'
#' @param company_trajectories_data company_trajectories_data
#' @param max_trajectories_granularity max_trajectories_granularity
#'
#' @export
#'
main_data_load_trajectories_data <- function(
company_trajectories_data,
granularity=c("company_id", "company_name", "ald_sector", "ald_business_unit"),
param_cols = c(
"run_id", "year","scenario_geography_arg", "baseline_scenario_arg",
"shock_scenario_arg", "risk_free_rate_arg", "discount_rate_arg", "div_netprofit_prop_coef_arg",
"carbon_price_model_arg", "market_passthrough_arg", "financial_stimulus_arg",
"growth_rate_arg", "shock_year_arg")
) {
group_cols <- unique(c(granularity, param_cols))
company_trajectories_data <- company_trajectories_data |>
aggregate_trajectories_facts(group_cols = group_cols)
return(company_trajectories_data)
}
load_multiple_trajectories <- function(crispy_outputs_dir) {
# Required Libraries
# Get file paths
files_path <- list.files(
path = crispy_outputs_dir,
pattern = "^company_trajectories_(.*).csv",
recursive = TRUE,
full.names = TRUE
)
stopifnot(length(files_path) > 0)
# Load all files into a list and add a run_id column for each dataframe
data_list <- purrr::map(files_path, function(fp) {
df <- readr::read_csv(fp,
col_types = readr::cols_only(
run_id = "c",
company_id = "c",
company_name = "c",
ald_sector = "c",
ald_business_unit = "c",
year = "d",
phase_out = "d",
baseline_scenario_arg = "c",
shock_scenario_arg = "c",
scenario_geography_arg = "c",
risk_free_rate_arg = "d",
discount_rate_arg = "d",
div_netprofit_prop_coef_arg = "d",
growth_rate_arg = "d",
shock_year_arg = "d",
carbon_price_model_arg = "c",
market_passthrough_arg = "d",
financial_stimulus_arg = "d",
production_plan_company_technology = "d",
production_baseline_scenario = "d",
production_target_scenario = "d",
production_shock_scenario = "d",
price_baseline_scenario = "d",
price_shock_scenario = "d",
net_profits_baseline_scenario = "d",
net_profits_shock_scenario = "d",
discounted_net_profits_baseline_scenario = "d",
discounted_net_profits_shock_scenario = "d"
)
) |>
dplyr::rename(
baseline_scenario = baseline_scenario_arg,
shock_scenario = shock_scenario_arg,
scenario_geography = scenario_geography_arg,
risk_free_rate=risk_free_rate_arg,
discount_rate=discount_rate_arg,
div_netprofit_prop_coef=div_netprofit_prop_coef_arg,
growth_rate=growth_rate_arg,
shock_year=shock_year_arg,
carbon_price_model=carbon_price_model_arg,
market_passthrough=market_passthrough_arg,
financial_stimulus=financial_stimulus_arg
) |>
dplyr::filter(.data$year < max(.data$year)) # removes last year that is NA
})
multi_trajectories_data <- dplyr::bind_rows(data_list)
return(multi_trajectories_data)
}
#' Aggregate numerical trajectories columns
#'
#' @param multi_trajectories dataframe of trajectories from 1 or multiple trisk truns
#' @param group_cols group_cols
#'
#' @export
#'
aggregate_trajectories_facts <- function(multi_trajectories, group_cols) {
multi_trajectories <- multi_trajectories |>
dplyr::group_by_at(group_cols) |>
dplyr::summarise(
production_baseline_scenario = sum(.data$production_baseline_scenario, na.rm = TRUE),
production_target_scenario = sum(.data$production_target_scenario, na.rm = TRUE),
production_shock_scenario = sum(.data$production_shock_scenario, na.rm = TRUE),
price_baseline_scenario= mean(.data$price_baseline_scenario, na.rm = TRUE),
price_shock_scenario = mean(.data$price_shock_scenario, na.rm = TRUE),
net_profits_baseline_scenario = sum(.data$net_profits_baseline_scenario, na.rm = TRUE),
net_profits_shock_scenario = sum(.data$net_profits_shock_scenario, na.rm = TRUE),
discounted_net_profits_baseline_scenario = sum(.data$discounted_net_profits_baseline_scenario, na.rm = TRUE),
discounted_net_profits_shock_scenario = sum(.data$discounted_net_profits_shock_scenario, na.rm = TRUE),
.groups = "drop"
)
return(multi_trajectories)
}