-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun.py
384 lines (310 loc) · 13.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#导入相关包
from sklearn.model_selection import StratifiedKFold
import lightgbm as lgb
from sklearn.metrics import roc_auc_score, accuracy_score
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from scipy.stats import skew, kurtosis
from sklearn.preprocessing import StandardScaler
import pandas as pd
import numpy as np
# 读取个人信息
train_agg = pd.read_csv('data/train_agg.csv',sep='\t')
test_agg = pd.read_csv('data/test_agg.csv',sep='\t')
agg = pd.concat([train_agg,test_agg],copy=False)
# 日志信息
train_log = pd.read_csv('data/train_log.csv',sep='\t')
test_log = pd.read_csv('data/test_log.csv',sep='\t')
df_log = pd.concat([train_log,test_log],copy=False)
# 用户唯一标识
train_flg = pd.read_csv('data/train_flg.csv',sep='\t')
test_flg = pd.read_csv('data/submit_sample.csv',sep='\t')
test_flg['FLAG'] = -1
del(test_flg['RST'])
flg = pd.concat([train_flg,test_flg],copy=False)
data = pd.merge(agg,flg,on=['USRID'],how='left',copy=False)
data = pd.merge(agg,flg,on=['USRID'],how='left',copy=False)
# 这里对agg表稍微做了处理,因为统计到V2,V4,V5就2种类型,可能之一为年龄或者等价为年龄的特征,然后V26的总类型数目,我认为是年龄,
# 然后将其按照下面的bins切分,并和V2,V4,V5组合起来,切分成中年男、少年男、老年男等等。当然下面的V22也有可能是类似年龄的特征,
# 也做了相同处理。
bins = [-1,1,2.3,5,11,100]
a = pd.cut(data['V26'],bins)
label = LabelEncoder()
data['V26'] = label.fit_transform(a)
#组合特征
data['V4_V26'] = data['V4'] + data['V26']
label = LabelEncoder()
data['V4_V26'] = label.fit_transform(data['V4_V26'])
data['V2_V26'] = data['V2'] + data['V26']
label = LabelEncoder()
data['V2_V26'] = label.fit_transform(data['V2_V26'])
data['V5_V26'] = data['V5'] + data['V26']
label = LabelEncoder()
data['V5_V26'] = label.fit_transform(data['V5_V26'])
bins = [-1,0,1,2.3,4,10,100]
a = pd.cut(data['V22'],bins)
label = LabelEncoder()
data['V22'] = label.fit_transform(a)
# 先统一把时间换算为秒,便于后面的计算
import time
log = pd.concat([train_log,test_log],copy=False)
a = log['OCC_TIM'].apply(lambda x:time.mktime(time.strptime(x, "%Y-%m-%d %H:%M:%S")))
date_1_time = '2018-04-01 00:00:00'
date_8_time = '2018-04-08 00:00:00'
b_1 = time.mktime(time.strptime(date_1_time, "%Y-%m-%d %H:%M:%S"))
b_8 = time.mktime(time.strptime(date_8_time, "%Y-%m-%d %H:%M:%S"))
log = pd.concat([train_log,test_log],copy=False)
# 这个部分计算当前点击APP的时间距离4月1号和4月8号的时间差的统计特征,如均值、方差、最大、最小、中位数、偏度、峰度。这些统计特征
# 可以充分挖掘到不同用户的行为差异。
log['OCC_TIM_1'] = (a - b_1).apply(np.abs)
m = log.groupby(['USRID'],as_index=False)['OCC_TIM_1'].agg({
'OCC_TIM_1_mean':np.mean,
'OCC_TIM_1_std':np.std,
'OCC_TIM_1_min':np.min,
'OCC_TIM_1_max':np.max,
'OCC_TIM_1_median':np.median,
'OCC_TIM_1_skew':skew,
'OCC_TIM_1_kurtosis':kurtosis
})
data = pd.merge(data,m,on=['USRID'],how='left',copy=False)
log['OCC_TIM_8'] = (a - b_8).apply(np.abs)
n = log.groupby(['USRID'],as_index=False)['OCC_TIM_8'].agg({
'OCC_TIM_8_mean':np.mean,
'OCC_TIM_8_std':np.std,
'OCC_TIM_8_min':np.min,
'OCC_TIM_8_max':np.max,
'OCC_TIM_8_median':np.median,
'OCC_TIM_8_skew':skew,
'OCC_TIM_8_kurtosis':kurtosis
})
data = pd.merge(data,n,on=['USRID'],how='left',copy=False)
log = pd.concat([train_log,test_log],copy=False)
# 这个部分利用点击的APP时间进行排序。然后计算用户下一次点击APP的时间差统计特征
log['OCC_TIM'] = a
log = log.sort_values(['USRID','OCC_TIM'])
log['next_time'] = log.groupby(['USRID'])['OCC_TIM'].diff(-1).apply(np.abs)
p = log.groupby(['USRID'],as_index=False)['next_time'].agg({
'next_time_mean':np.mean,
'next_time_std':np.std,
'next_time_min':np.min,
'next_time_max':np.max,
'next_time_median':np.median,
'next_time_skew':skew,
'next_time_kurtosis':kurtosis
})
data = pd.merge(data,p,on=['USRID'],how='left',copy=False)
data = data.fillna(0)
new = pd.merge(df_log, data[['USRID','FLAG']], on='USRID')
#对于点击模块问题,虽然为数字编码,但是题目意思是说点击模块的3个级别,是存在大小关系的。所以我进行了类似于上述时间的统计特征的计算。
#不过在计算之前,是先将3个模块分开,分别计算每个模块的统计特征。
new['EVT_LBL_1'] = new['EVT_LBL'].apply(lambda x:int(x.split('-')[0]))
new['EVT_LBL_2'] = new['EVT_LBL'].apply(lambda x:int(x.split('-')[1]))
new['EVT_LBL_3'] = new['EVT_LBL'].apply(lambda x:int(x.split('-')[2]))
new_1 = new.groupby(['USRID'],as_index=False)['EVT_LBL_1'].agg({
'EVT_LBL_1_mean':np.mean,
'EVT_LBL_1_std':np.std,
'EVT_LBL_1min':np.min,
'EVT_LBL_1_max':np.max,
'EVT_LBL_1_median':np.median,
'EVT_LBL_1_skew':skew,
'EVT_LBL_1_kurtosis':kurtosis
})
data = pd.merge(data,new_1,on=['USRID'],how='left',copy=False)
new_2 = new.groupby(['USRID'],as_index=False)['EVT_LBL_2'].agg({
'EVT_LBL_2_mean':np.mean,
'EVT_LBL_2_std':np.std,
'EVT_LBL_2min':np.min,
'EVT_LBL_2_max':np.max,
'EVT_LBL_2_median':np.median,
'EVT_LBL_2_skew':skew,
'EVT_LBL_2_kurtosis':kurtosis
})
data = pd.merge(data,new_2,on=['USRID'],how='left',copy=False)
new_3 = new.groupby(['USRID'],as_index=False)['EVT_LBL_3'].agg({
'EVT_LBL_3_mean':np.mean,
'EVT_LBL_3_std':np.std,
'EVT_LBL_3min':np.min,
'EVT_LBL_3_max':np.max,
'EVT_LBL_3_median':np.median,
'EVT_LBL_3_skew':skew,
'EVT_LBL_3_kurtosis':kurtosis
})
data = pd.merge(data,new_3,on=['USRID'],how='left',copy=False)
data = data.fillna(0)
new = pd.merge(df_log, data[['USRID','FLAG']], on='USRID')
#这个模块统计了每个有log的用户分别点击了多少种模块
new['EVT_LBL_1'] = new['EVT_LBL'].apply(lambda x:int(x.split('-')[0]))
new['EVT_LBL_2'] = new['EVT_LBL'].apply(lambda x:int(x.split('-')[1]))
new['EVT_LBL_3'] = new['EVT_LBL'].apply(lambda x:int(x.split('-')[2]))
a1 = new.groupby('USRID', as_index=False)['EVT_LBL_1'].count()
data = pd.merge(data, a1, on='USRID', how='left')
a2 = new.groupby('USRID', as_index=False)['EVT_LBL_2'].count()
data = pd.merge(data, a2, on='USRID', how='left')
a3 = new.groupby('USRID', as_index=False)['EVT_LBL_3'].count()
data = pd.merge(data, a3, on='USRID', how='left')
data = data.fillna(0)
#加入每位顾客点击APP次数的特征
c= pd.DataFrame()
c['USRID'] = df_log.USRID.value_counts().index
c['click_total'] = df_log.USRID.value_counts().values
data = pd.merge(data,c,on=['USRID'],how='left',copy=False)
data.loc[data['click_total'].isnull(), 'click_total'] = 0
#加入顾客是如何点击的特征,两种方式:0 2, 缺失值的顾客将其记为-1
b = df_log.groupby(['USRID'], as_index=False)['TCH_TYP'].sum()
data = pd.merge(data, b, on = 'USRID', how='left')
data.loc[data.TCH_TYP > 0, 'TCH_TYP'] = 2.0
data['TCH_TYP'].loc[data['TCH_TYP'].isnull()] = -1
le = LabelEncoder()
data['TCH_TYP'] = le.fit_transform(data['TCH_TYP'])
#这个特征是顾客在3月双休日点击APP的总次数
new = pd.merge(df_log, data[['USRID','FLAG']], on='USRID')
new['date'] = new.OCC_TIM.apply(lambda x:x.split()[0])
new['date'] = new['date'].apply(lambda x:x.split('-')[2])
new['date_week'] = new.date.apply(lambda x:1 if x in ['03','04','17', '18','24','25','31'] else 0)
a = new.groupby('USRID', as_index=False)['date_week'].sum()
data = pd.merge(data, a, on='USRID',how='left')
data = data.fillna(0)
#上面漏了一个agg的处理,也就是将V12进行7等分等频率切割,V2、V4、V5分别两两组合以下作为新的特征
data['V12'] = pd.qcut(data['V12'], 7)
label = LabelEncoder()
data['V12'] = label.fit_transform(data['V12'])
#组合特征
data['V4_V5'] = data['V4'] + data['V5']
data['V2_V4'] = data['V2'] + data['V4']
data['V2_V5'] = data['V2'] + data['V5']
#这些特征是为了计算用户点击APP的时间段,比如晚上22点到凌晨1点这个时间段用户点击APP的总次数。
#分别考虑了时针和秒针。
new['date_h_1'] = new.OCC_TIM.apply(lambda x:x.split()[1])
new['date_h_1'] = new['date_h_1'].apply(lambda x:x.split(':')[0])
new['date_h_1'] = new['date_h_1'].apply(lambda x:1 if int(x) < 1 else 0)
new['date_h_2'] = new.OCC_TIM.apply(lambda x:x.split()[1])
new['date_h_2'] = new['date_h_2'].apply(lambda x:x.split(':')[0])
new['date_h_2'] = new['date_h_2'].apply(lambda x:1 if int(x) > 22 else 0)
new['date_m_1'] = new.OCC_TIM.apply(lambda x:x.split()[1])
new['date_m_1'] = new['date_m_1'].apply(lambda x:x.split(':')[1])
new['date_m_1'] = new['date_m_1'].apply(lambda x:1 if int(x) < 4 else 0)
new['date_m_2'] = new.OCC_TIM.apply(lambda x:x.split()[1])
new['date_m_2'] = new['date_m_2'].apply(lambda x:x.split(':')[1])
new['date_m_2'] = new['date_m_2'].apply(lambda x:1 if int(x) > 57 else 0)
new['date_add_h'] =new['date_h_2']+new['date_h_1']
a1 = new.groupby('USRID', as_index=False)['date_add_h'].sum()
data = pd.merge(data, a1, on='USRID',how='left')
new['date_add_m'] =new['date_m_2'] + new['date_m_1']
a1 = new.groupby('USRID', as_index=False)['date_add_m'].sum()
data = pd.merge(data, a1, on='USRID',how='left')
data = data.fillna(0)
# 上面就是模型的总特征,下面提取测试集和训练集合,用lightgbm进行预测,由于交叉验证的折数不好确定,我将模型分为5折和10折,然后对两个结果
# 取平均作为最后预测的结果。
train = data.loc[(data['FLAG']!=-1)]
test = data.loc[(data['FLAG']==-1)]
print('train',train.shape)
print('test',test.shape)
# 构造数据
# 提取userid和单独把标签赋值一个变量
train_userid = train.pop('USRID')
y = train.pop('FLAG')
col = train.columns
X = train[col].values
test_userid = test.pop('USRID')
test_y = test.pop('FLAG')
test_X = test[col].values
#归一化
std_scaler = StandardScaler()
X = std_scaler.fit_transform(X)
test_X = std_scaler.transform(test_X)
N = 10
skf = StratifiedKFold(n_splits=N,shuffle=False,random_state=42)
xx_cv = []
xx_pre = []
import operator
for k,(train_in,test_in) in enumerate(skf.split(X,y)):
X_train,X_test,y_train,y_test = X[train_in],X[test_in],y[train_in],y[test_in]
# create dataset for lightgbm
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# specify your configurations as a dict
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': {'auc'},
'num_leaves': 32,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': 0
}
print('Start training...')
# train
gbm = lgb.train(params,
lgb_train,
num_boost_round=40000,
valid_sets=lgb_eval,
early_stopping_rounds=50,
verbose_eval=1500)
print('Start predicting...')
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)
xx_cv.append(roc_auc_score(y_test,np.array(y_pred)))
xx_pre.append(gbm.predict(test_X, num_iteration=gbm.best_iteration))
xx_pre_yu_10 = np.mean(xx_pre, axis=0)
xx_cv_10 = np.mean(xx_cv)
# 提取测试集和训练集合
train = data.loc[(data['FLAG']!=-1)]
test = data.loc[(data['FLAG']==-1)]
print('train',train.shape)
print('test',test.shape)
# 构造数据
# 提取userid和单独把标签赋值一个变量
train_userid = train.pop('USRID')
y = train.pop('FLAG')
col = train.columns
X = train[col].values
test_userid = test.pop('USRID')
test_y = test.pop('FLAG')
test_X = test[col].values
#还是需要归一化的
std_scaler = StandardScaler()
X = std_scaler.fit_transform(X)
test_X = std_scaler.transform(test_X)
N = 5
skf = StratifiedKFold(n_splits=N,shuffle=False,random_state=42)
xx_cv = []
xx_pre = []
import operator
for k,(train_in,test_in) in enumerate(skf.split(X,y)):
X_train,X_test,y_train,y_test = X[train_in],X[test_in],y[train_in],y[test_in]
# create dataset for lightgbm
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# specify your configurations as a dict
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': {'auc'},
'num_leaves': 32,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': 0
}
print('Start training...')
# train
gbm = lgb.train(params,
lgb_train,
num_boost_round=40000,
valid_sets=lgb_eval,
early_stopping_rounds=50,
verbose_eval=1500)
print('Start predicting...')
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)
xx_cv.append(roc_auc_score(y_test,np.array(y_pred)))
xx_pre.append(gbm.predict(test_X, num_iteration=gbm.best_iteration))
xx_pre_yu = np.mean(xx_pre, axis=0)
xx_cv = np.mean(xx_cv)
xx_pre_yu = (xx_pre_yu + xx_pre_yu_10) / 2
result = xx_pre_yu
res = pd.DataFrame()
res['USRID'] = list(test_userid.values)
res['RST'] = list(result)
time_date = time.strftime('%Y-%m-%d',time.localtime(time.time()))
res.to_csv('%s_%s.csv'%(str(time_date),str((xx_cv + xx_cv_10)/2).split('.')[1]),index=False,sep='\t')