-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathl3_r.cpp
726 lines (591 loc) · 19.2 KB
/
l3_r.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
#include <iostream>
#include <cassert>
#include <vector>
#include <utility>
#include <tuple>
#include <cmath>
#include <limits>
namespace Rationals
{
int64_t calculate_lcm(int64_t, int64_t);
int64_t calculate_gcd(int64_t, int64_t);
class Rational
{
private:
int64_t numerator;
int64_t denominator;
void simplify()
{
int64_t gcd = calculate_gcd(this->numerator, this->denominator);
this->numerator /= gcd;
this->denominator /= gcd;
if(this->denominator < 0)
{
this->numerator *= -1;
this->denominator *= -1;
}
}
public:
Rational() : Rational(0)
{
}
Rational(int64_t n, int64_t d)
{
this->numerator = n;
this->denominator = d;
this->simplify();
}
Rational(int n, int d) : Rational((int64_t)n, (int64_t)d)
{
}
Rational(int64_t r) : Rational(r, (int64_t)1)
{
}
Rational(int r) : Rational((int64_t)r)
{
}
Rational(double r, long double precision = 1e-5, int64_t cycles = 10)
{
//Reference: https://gist.github.com/mikeando/7073d62385a34a61a6f7
//Reference: https://stackoverflow.com/a/64828741/12512406
double eps = 1e-15;
int sign = r > 0 ? 1 : -1;
r = r * sign;
int64_t Aprev[2] = {1, 0};
int64_t Bprev[2] = {0, 1};
double x = r;
double dif = precision + 1;
while(cycles > 0 && dif - precision > std::numeric_limits<double>::epsilon())
{
int64_t n = std::floor(x);
x-=n;
x=1/x;
int64_t A = Aprev[0] + n * Aprev[1];
Aprev[0] = Aprev[1];
Aprev[1] = A;
int64_t B = Bprev[0] + n * Bprev[1];
Bprev[0] = Bprev[1];
Bprev[1] = B;
if(A < 0 || B < 0)
break;
this->numerator = Bprev[1];
this->denominator = Aprev[1];
double approx = (double)B/(double)A;
double dif = std::abs(approx - r);
--cycles;
}
this->numerator *= sign;
this->simplify();
}
Rational(const Rational& r) : Rational(r.numerator, r.denominator)
{
}
int64_t get_numerator() const
{
return this->numerator;
}
int64_t get_denominator() const
{
return this->denominator;
}
Rational& operator=(const Rational& r2)
{
this->numerator = r2.numerator;
this->denominator = r2.denominator;
return *this;
}
Rational& operator+=(const Rational& r2)
{
int64_t lcm = calculate_lcm(this->denominator, r2.denominator);
int64_t term1 = lcm / this->denominator * this->numerator;
int64_t term2 = lcm / r2.denominator * r2.numerator;
this->numerator = term1 + term2;
this->denominator = lcm;
this->simplify();
return *this;
}
Rational& operator-=(const Rational& r2)
{
Rational r(-r2.numerator, r2.denominator);
*this += r;
return *this;
}
Rational& operator*=(const Rational& r2)
{
int64_t gcd1 = calculate_gcd(this->numerator, r2.denominator);
int64_t gcd2 = calculate_gcd(this->denominator, r2.numerator);
this->numerator /= gcd1;
this->numerator *= (r2.numerator / gcd2);
this->denominator /= gcd2;
this->denominator *= (r2.denominator / gcd1);
this->simplify();
return *this;
}
Rational& operator/=(const Rational& r2)
{
Rational r(r2.denominator, r2.numerator);
*this *= r;
return *this;
}
explicit operator double() const
{
return (double)(this->numerator) / this->denominator;
}
friend std::istream& operator>>(std::istream& , Rational&);
};
std::istream& operator>>(std::istream& in, Rational& r)
{
int64_t n,d;
char c;
in >> n >> c >> d;
if( c != '/' )
throw std::invalid_argument( "Ill format encountered while reading" );
r.numerator = n;
r.denominator = d;
r.simplify();
return in;
}
std::ostream& operator<<(std::ostream& out, const Rational& r)
{
out << r.get_numerator() << "/" << r.get_denominator();
return out;
}
Rational operator+(const Rational& r1, const Rational& r2)
{
Rational r = r1;
r += r2;
return r;
}
Rational operator-(const Rational& r1, const Rational& r2)
{
Rational r = r1;
r -= r2;
return r;
}
Rational operator*(const Rational& r1, const Rational& r2)
{
Rational r = r1;
r *= r2;
return r;
}
Rational operator/(const Rational& r1, const Rational& r2)
{
Rational r = r1;
r /= r2;
return r;
}
bool operator<(const Rational& r1, const Rational& r2)
{
int64_t lcm = calculate_lcm(r1.get_denominator(), r2.get_denominator());
int64_t term1 = lcm / r1.get_denominator() * r1.get_numerator();
int64_t term2 = lcm / r2.get_denominator() * r2.get_numerator();
return term1 < term2;
}
bool operator>(const Rational& r1, const Rational& r2)
{
return r2 < r1;
}
bool operator<=(const Rational& r1, const Rational& r2)
{
return !(r2 < r1);
}
bool operator>=(const Rational& r1, const Rational& r2)
{
return !(r1 < r2);
}
bool operator==(const Rational& r1, const Rational& r2)
{
return !(r1 < r2) && !(r2 < r1);
}
bool operator!=(const Rational& r1, const Rational& r2)
{
return !(r1 == r2);
}
int64_t calculate_lcm(int64_t a, int64_t b)
{
return a * (b / calculate_gcd(a, b));
}
int64_t calculate_gcd(int64_t a, int64_t b)
{
while(b != 0)
{
int64_t r = a % b;
a = b;
b = r;
}
return a;
}
Rational floor(const Rational& r)
{
int64_t rem = r.get_numerator() % r.get_denominator();
if( rem < 0 )
rem = r.get_denominator() + rem;
Rational r2(r.get_numerator() - rem, r.get_denominator());
return r2;
}
Rational ceil(const Rational& r)
{
Rational r2(r.get_numerator() - 1, r.get_denominator());
return floor(r2) + 1;
}
Rational round(const Rational& r)
{
Rational r2 = r - Rational(1, 2);
return ceil(r2);
}
Rational abs(const Rational& r)
{
Rational abs_r(std::abs(r.get_numerator()), r.get_denominator());
return abs_r;
}
Rational pow(Rational num, int exponent)
{
if( exponent < 0 )
{
exponent *= -1;
num = 1 / num;
}
Rational result(1);
while(exponent > 0)
{
if(exponent & 1)
result *= num;
num *= num;
exponent >>= 1;
}
return result;
}
}
using namespace Rationals;
template<typename T>
std::ostream& operator<<(std::ostream &out, const std::vector<T> &vec)
{
size_t size = vec.size();
out << "(";
for(size_t i = 0 ; i < size ; ++i)
{
out << vec[i];
if(i != size - 1)
out << ",";
}
out << ")";
return out;
}
std::vector<Rational> subtract_vectors(const std::vector<Rational>& vector1, const std::vector<Rational>& vector2)
{
const int m1 = vector1.size();
const int m2 = vector2.size();
assert(m1 == m2);
std::vector<Rational> result(m1);
for(int i = 0 ; i < m1 ; ++i)
result[i] = vector1[i] - vector2[i];
return result;
}
std::vector<Rational> add_vectors(const std::vector<Rational>& vector1, const std::vector<Rational>& vector2)
{
const int m1 = vector1.size();
const int m2 = vector2.size();
assert(m1 == m2);
std::vector<Rational> result(m1);
for(int i = 0 ; i < m1 ; ++i)
result[i] = vector1[i] + vector2[i];
return result;
}
std::vector<Rational> multipy_scaler_to_vector(Rational scaler_value, const std::vector<Rational>& vector)
{
const int m = vector.size();
std::vector<Rational> scaled_vector(m);
for(int i = 0 ; i < m ; ++i)
scaled_vector[i] = scaler_value * vector[i];
return scaled_vector;
}
//Assuming Matirx is Square
template<typename T1, typename T2>
T1 calculate_determinant(const std::vector<std::vector<T2>>& matrix)
{
const int n = matrix.size();
if(n == 1)
return matrix[0][0];
else if(n == 2)
return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
else
{
T1 determinant = 0;
for(int col_i = 0, sign = 1 ; col_i < n ; ++col_i, sign = -sign)
{
std::vector<std::vector<T2>> sub_matrix(n - 1, std::vector<T2>(n - 1));
for(int row_i = 1, subrow = 0 ; row_i < n ; ++row_i, ++subrow)
{
for(int col_j = 0, subcol = 0 ; col_j < n ; ++col_j)
{
if(col_j == col_i)
continue;
sub_matrix[subrow][subcol] = matrix[row_i][col_j];
++subcol;
}
}
T1 sub_determinant = matrix[0][col_i];
if(sub_determinant != 0)
sub_determinant *= sign * calculate_determinant<T1, T2>(sub_matrix);
determinant += sub_determinant;
}
return determinant;
}
}
template<typename T1, typename T2>
Rational calculate_inner_product(const std::vector<T1>& vector1, const std::vector<T2>& vector2)
{
const int m1 = vector1.size();
const int m2 = vector2.size();
assert(m1 == m2);
Rational inner_product = 0;
for(int i = 0 ; i < m1 ; ++i)
{
Rational terms_product = vector1[i] * vector2[i];
inner_product += terms_product;
}
return inner_product;
}
template<typename T>
Rational calculate_norm(const std::vector<T>& vector)
{
Rational norm = std::sqrt(double(calculate_inner_product(vector, vector)));
return norm;
}
template<typename T1, typename T2>
Rational calculate_gram_schmidt_coefficient(const std::vector<T1>& vector, const std::vector<T2>& normalised_vector)
{
Rational numerator = calculate_inner_product(vector, normalised_vector);
Rational denominator = calculate_inner_product(normalised_vector, normalised_vector);
Rational coefficient = numerator / denominator;
return coefficient;
}
template<typename T>
std::tuple<std::vector<std::vector<Rational>>, std::vector<std::vector<Rational>>, std::vector<Rational>> calculate_gram_schmidt_coefficients_and_normalised_vector_norms(const std::vector<std::vector<T>>& vectors)
{
const int m = vectors.size();
std::vector<std::vector<Rational>> normalised_vectors(m, std::vector<Rational>(m));
std::vector<std::vector<Rational>> gram_schmidt_coefficients(m, std::vector<Rational>(m));
for(int i = 0 ; i < m ; ++i)
gram_schmidt_coefficients[i][i] = 1;
for(int i = 0 ; i < m ; ++i)
{
for(int j = 0 ; j < m ; ++j)
normalised_vectors[i][j] = vectors[i][j];
for(int j = 0 ; j < i ; ++j)
{
gram_schmidt_coefficients[i][j] = calculate_gram_schmidt_coefficient(vectors[i], normalised_vectors[j]);
std::vector<Rational> projection_vector = multipy_scaler_to_vector(gram_schmidt_coefficients[i][j], normalised_vectors[j]);
normalised_vectors[i] = subtract_vectors(normalised_vectors[i], projection_vector);
}
}
std::vector<Rational> normalised_vector_norms_squared(m);
for(int i = 0 ; i < m ; ++i)
normalised_vector_norms_squared[i] = calculate_inner_product(normalised_vectors[i], normalised_vectors[i]);
return std::make_tuple(gram_schmidt_coefficients, normalised_vectors, normalised_vector_norms_squared);
}
void size_reduce_basis_k_and_update_gram_schmidt_coefficients(int k, std::vector<std::vector<Rational>>* reduced_basis, std::vector<std::vector<Rational>>* gram_schmidt_coefficients)
{
// std::cout << *gram_schmidt_coefficients << std::endl;
const int m = reduced_basis->size();
for(int j = k - 1 ; j >= 0 ; --j)
{
if(abs((*gram_schmidt_coefficients)[k][j]) > Rational(1, 2))
{
std::vector<Rational> scaled_vector = multipy_scaler_to_vector(round((*gram_schmidt_coefficients)[k][j]), (*reduced_basis)[j]);
(*reduced_basis)[k] = subtract_vectors((*reduced_basis)[k], scaled_vector);
for(int i = 0 ; i < m ; ++i)
{
(*gram_schmidt_coefficients)[k][i] -= round((*gram_schmidt_coefficients)[k][j]) * (*gram_schmidt_coefficients)[j][i];
}
}
}
// std::cout << *gram_schmidt_coefficients << std::endl;
}
std::vector<std::vector<Rational>> l3_reduction(const std::vector<std::vector<Rational>>& basis, Rational delta)
{
const int m = basis.size();
std::vector<std::vector<Rational>> reduced_basis(m, std::vector<Rational>(m));
for(int i = 0 ; i < m ; ++i)
for(int j = 0 ; j < m ; ++j)
reduced_basis[i][j] = basis[i][j];
std::vector<std::vector<Rational>> gram_schmidt_coefficients;
std::vector<Rational> normalised_vector_norms_squared;
std::tie(gram_schmidt_coefficients, std::ignore, normalised_vector_norms_squared) = calculate_gram_schmidt_coefficients_and_normalised_vector_norms(reduced_basis);
std::cout << gram_schmidt_coefficients << std::endl ;
std::cout << normalised_vector_norms_squared << std::endl;
int k = 1; //1 as 0 base indexing
while( k < m )
{
size_reduce_basis_k_and_update_gram_schmidt_coefficients(k, &reduced_basis, &gram_schmidt_coefficients);
if( delta * normalised_vector_norms_squared[k - 1] > normalised_vector_norms_squared[k] + pow(gram_schmidt_coefficients[k][k-1], 2) * normalised_vector_norms_squared[k - 1] )
{
std::swap(reduced_basis[k], reduced_basis[k - 1]);
k = std::max(k - 1, 1);
std::tie(gram_schmidt_coefficients, std::ignore, normalised_vector_norms_squared) = calculate_gram_schmidt_coefficients_and_normalised_vector_norms(reduced_basis);
}
else
++k;
// std::cout << "k=" << k << std::endl;
// std::cout << reduced_basis << std::endl;
// std::cout << gram_schmidt_coefficients << std::endl;
}
return reduced_basis;
}
//|u_(i,j)| <= 1/2 for 1 <= j < i <= n
bool check_condition1(const std::vector<std::vector<Rational>>& gram_schmidt_coefficients)
{
const int n = gram_schmidt_coefficients.size();
for(int i = 0 ; i < n ; ++i)
{
for(int j = 0 ; j < i ; ++j)
{
if( gram_schmidt_coefficients[i][j] > 1.0/2 )
return false;
}
}
return true;
}
// delta * || ~(b_i) ||^2 <= || u_(i+1, i) * ~(b_i) + ~(b_i+1) ||^2
bool check_condition2(const std::vector<std::vector<Rational>>& gram_schmidt_coefficients, const std::vector<std::vector<Rational>>& normalised_vectors, const Rational& delta)
{
const int n = normalised_vectors.size();
for(int i = 0 ; i < n - 1; ++i)
{
Rational left_side_term = delta * calculate_inner_product(normalised_vectors[i], normalised_vectors[i]);
std::vector<Rational> right_side_term1 = multipy_scaler_to_vector(gram_schmidt_coefficients[i + 1][i], normalised_vectors[i]);
std::vector<Rational> right_side_term2 = add_vectors(right_side_term1, normalised_vectors[i + 1]);
Rational right_side_term = calculate_inner_product(right_side_term2, right_side_term2);
if( left_side_term > right_side_term )
return false;
}
return true;
}
//det(lattice) <= PI_i_1_to_n || b_i(reduced_basis) || <= det(lattice) * (PI_i_1_to_n (1 + (aplha/4) * ((alpha^(i - 1) - 1 ) / (alpha -1)))) ^ 0.5
bool check_condition3(const std::vector<std::vector<Rational>>& lattice, const std::vector<std::vector<Rational>>& reduced_basis, const Rational& alpha)
{//Code needs to be looked for correctness
const int n = lattice.size();
Rational determinant = calculate_determinant<Rational, Rational>(lattice);
Rational abs_determinant = abs(determinant);
Rational norm_product = 1;
for(int i = 0 ; i < n ; ++i)
norm_product *= calculate_norm(reduced_basis[i]);
if( abs_determinant > norm_product )
return false;
Rational product = 1;
for(int i = 0 ; i < n ; ++i) //0-based indexing
{
Rational term = 1 + (alpha / 4.0) * ((pow(alpha, i) - 1) / (alpha - 1));
// std::cout << i << " -> " << alpha << " | " << alpha - 1 << " " << pow(alpha, i) << " : " << term << "\n";
product *= term;
}
Rational right_side_term = abs_determinant * std::sqrt(double(product));
// std::cout << alpha << "\n";
// std::cout << abs_determinant << " " << norm_product << " " << right_side_term << "\n";
if( norm_product > right_side_term )
return false;
return true;
}
//|| b_j || <= alpha ^ ((i - j)/2) * (1 + (aplha/4) * ((alpha^(i - 1) - 1 ) / (alpha -1))) ^ 0.5 * || ~(b_i) || for all i > j
bool check_condition4(const std::vector<std::vector<Rational>>& normalised_vectors, const std::vector<std::vector<Rational>>& reduced_basis, const Rational& alpha)
{
const int n = normalised_vectors.size();
std::vector<Rational> normalised_vectors_norm(n);
for(int i = 0 ; i < n ; ++i)
normalised_vectors_norm[i] = calculate_norm(normalised_vectors[i]);
std::vector<Rational> reduced_basis_norm(n);
for(int i = 0 ; i < n ; ++i)
reduced_basis_norm[i] = calculate_norm(reduced_basis[i]);
for(int j = 0 ; j < n ; ++j)
{
for(int i = j + 1 ; i < n ; ++i)
{
Rational term1 = std::pow(double(alpha), (i - j) / 2.0);
Rational term2 = 1 + (alpha / 4.0) * ((pow(alpha, i) - 1) / (alpha - 1));
Rational term3 = normalised_vectors_norm[i];
Rational term = term1 * std::sqrt(double(term2)) * term3;
if(reduced_basis_norm[j] > term)
return false;
}
}
return true;
}
// || b_1 || <= alpha^((n - 1) / 4) * det(lattice) ^ 1 / n
bool check_condition5(const std::vector<std::vector<Rational>>& lattice, const std::vector<std::vector<Rational>>& reduced_basis, const Rational& alpha)
{
const int n = lattice.size();
Rational determinant = calculate_determinant<Rational, Rational>(lattice);
Rational reduced_basis_0_norm = calculate_norm(reduced_basis[0]);
Rational right_side = std::pow(double(alpha), (n - 1) / 4.0) * pow(determinant, n);
if(reduced_basis_0_norm > right_side)
return false;
return true;
}
// || b_1 || <= alpha^((n - 1) / 2) * || x || for every x in lattice
bool check_condition6(const std::vector<std::vector<Rational>>& lattice, const std::vector<std::vector<Rational>>& reduced_basis, const Rational& alpha)
{
const int n = lattice.size();
Rational reduced_basis_0_norm = calculate_norm(reduced_basis[0]);
for(int i = 0 ; i < n ; ++i)
{
Rational right_side = std::pow(double(alpha), (n - 1) / 2.0) * calculate_norm(lattice[i]);
if(reduced_basis_0_norm > right_side)
return false;
}
return true;
}
bool are_properties_satisfied(const std::vector<std::vector<Rational>>& lattice, const std::vector<std::vector<Rational>>& reduced_basis, const Rational& delta)
{
const Rational alpha = 1 / (delta - 1.0/4);
std::vector<std::vector<Rational>> gram_schmidt_coefficients;
std::vector<std::vector<Rational>> normalised_vectors;
std::tie(gram_schmidt_coefficients, normalised_vectors, std::ignore) = calculate_gram_schmidt_coefficients_and_normalised_vector_norms(reduced_basis);
bool condition1 = check_condition1(gram_schmidt_coefficients);
if( !condition1 )
return false;
bool condition2 = check_condition2(gram_schmidt_coefficients, normalised_vectors, delta);
if( !condition2 )
return false;
bool condition3 = check_condition3(lattice, reduced_basis, alpha);
if( !condition3 )
return false;
bool condition4 = check_condition4(normalised_vectors, reduced_basis, alpha);
if( !condition4 )
return false;
bool condition5 = check_condition5(lattice, reduced_basis, alpha);
if( !condition5 )
return false;
bool condition6 = check_condition6(lattice, reduced_basis, alpha);
if( !condition6 )
return false;
return true;
}
int main()
{
std::vector<std::vector<Rational>> basis;
// basis = {{201, 37}, {1648, 297}};
// basis = {{1650, 3744}, {164534, 2342}};
// basis = {{1, 1}, {1, 0}};
// basis = std::vector<std::vector<Rational>>(10, std::vector<Rational>(10));
// for(int i = 0 ; i < 10 ; ++i)
// basis[i][i] = 1;
// basis[2][2] = 2;
// basis = {{2, 3, 4, 1}, {1, 1, -1, 1}, {-1, 1, 9, 5}, {12, 7, 3, 5}};
basis = {{1121, 343, -4354, 9746}, {34342, 98341, -13224, -56942}, {1, 1, 1, 1}, {-53, 43, -932, -1}};
Rational delta(99,100);
const int m = basis.size();
for(int i = 0 ; i < m ; ++i)
assert(basis[i].size() == m);
std::cout << "Input Basis:" << "\n";
std::cout << basis << "\n";
std::cout << "delta: " << delta << "\n";
std::cout << std::endl;
std::vector<std::vector<Rational>> reduced_basis = l3_reduction(basis, delta);
std::cout << "L3 reduced Output Basis:" << "\n";
std::cout << reduced_basis << "\n";
std::cout << std::endl;
bool check_validty = are_properties_satisfied(basis, reduced_basis, delta);
std::cout << "L3 reduction is " << (check_validty ? "" : "not ") << "valid" << "\n";
std::cout << std::endl;
return 0;
}